• Title/Summary/Keyword: Korean granite

Search Result 1,563, Processing Time 0.022 seconds

Distribution Characteristics of Uranium and Radon Concentrations of Groundwater in Gwangju Area (광주지역 지하수 중 우라늄과 라돈의 함량 분포 특성)

  • Seo, Heejeong;Min, Kyoungwoo;Park, Jiyoung;Park, Juhyun;Hwang, Hoyeon;Park, Seil;Kim, Seonjeong;Jeong, Sukkyung;Bae, Seokjin;Kim, Seongjun
    • Journal of Environmental Health Sciences
    • /
    • v.48 no.2
    • /
    • pp.86-95
    • /
    • 2022
  • Background: As high concentrations of uranium and radon have been detected in some areas in Korea, it is considered necessary to investigate natural radioactive materials in the Gwangju area. Objectives: This study aimed to identify the hydrochemical characteristics of groundwater in Gwangju and investigate the distribution characteristics of uranium and radon, which are naturally radioactive substances. Methods: To determine the uranium and radon concentrations in groundwater according to the geology of the Gwangju area, we measured 62 groundwater wells. A geological distribution map of uranium and radon content was prepared for this study. Results: The groundwater type, defined using a Piper diagram, was mainly Ca-HCO3. The concentration of uranium in the groundwater ranged from 0 to 29.3 ㎍/L, with a mean of 3.3 ㎍/L and a median of 0.9 ㎍/L. The median concentration of uranium in groundwater was highest in alluvium, granitic gneiss, and biotite granite (classified by geological unit), in that order. The concentration of radon in the groundwater ranged from 4.8 to 313.2 Bq/L, with a mean of 75.6 Bq/L and a median of 59.6 Bq/L. The median concentration of radon in groundwater was highest in biotite granite, alluvium, and granitic gneiss, in that order. As a result of the correlation analysis of groundwater in the study area, there was no significant correlation between uranium and radon. Conclusions: In this study area, uranium was shown to be far below the concentrations allowed by drinking water quality standards, but radon concentrations exceeded drinking water quality monitoring standards in 11% of the samples. It was judged that appropriate measures, such as the installation of radon reduction facilities, will be required after a thorough review of high-concentration radon detection sites of in the research area.

Analysis of Surface Contaminants and Physical Properties of the Daejanggakgibi Stele of Silleuksa Temple using Non-destructive Technology (비파괴 기술을 활용한 여주 신륵사 대장각기비의 표면오염물 분석과 물성진단)

  • KIM, Jiyoung;LEE, Myeongseong
    • Korean Journal of Heritage: History & Science
    • /
    • v.55 no.2
    • /
    • pp.186-197
    • /
    • 2022
  • The Daejanggakgibi Stele of Silleuksa Temple in Yeoju is a stone stele from the Goryeo Dynasty that is inscribed with various stories about the construction of Daejanggak, a place where Buddhist scriptures were kept. This stele has been maintained for a long time in a state in which discoloration of the body has occurred, and the inscription has been partially damaged due to dozens of cracks. Using non-destructive analysis methods for stone artifacts, material investigation, portable X-ray fluorescence analysis, and ultrasonic velocity analysis for the stele were performed. It was confirmed that the stele body was composed of light gray crystalline limestone, and the base stone, support stone, and cover stone were medium-grained biotite granite. Portable X-ray fluorescence analysis confirmed that iron(Fe) was an original coloring element of the stele surface. From the distribution pattern of the coloration, it can be inferred that iron-containing materials flew down from between the stele body and the cover stone. Thereafter, living organisms or organic contaminants attached to it so that yellow and black contaminants were formed. Ultrasonic diagnosis revealed that the physical property of both the front and back surfaces ranged from fresh rocks(FR) to completely weathered rocks(CW), and the average weathering index was grade 3(intermediate). However, the point where cracks developed intensively was judged to be the completely weathered stage(CW), and some cracks located in the upper and lower parts of the stele bear potentially very high risk. It is necessary to monitor the movement of these cracks and establish reinforcement measures for conservation in the future.

Development and Assessment for Resilient Modulus Prediction Model of Railroad Trackbeds Based on Modulus Reduction Curve (탄성계수 감소곡선에 근거한 철도노반의 회복탄성계수 모델 개발 및 평가)

  • Park, Chul Soo;Hwang, Seon Keun;Choi, Chan Yong;Mok, Young Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2C
    • /
    • pp.71-79
    • /
    • 2009
  • This study is to develope the resilient modulus prediction model, which is the function of mean effective principal stress and axial strain, for three types of railroad trackbed materials such as crushed stone, weathered granite soil, and crushed-rock soil mixture. The model consists of the maximum Young's modulus and nonlinear values for higher strain, analogous to dynamic shear modulus. The maximum value is modeled by model parameters, $A_E$ and the power of mean effective principal stress, $n_E$. The nonlinear portion is represented by modified hyperbolic model, with the model parameters of reference strain, ${\varepsilon}_r$ and curvature coefficient, a. To assess the performance of the prediction models proposed herein, the elastic response of a test trackbed near PyeongTaek, Korea, was evaluated using a 3-D elastic multilayer computer program (GEOTRACK). The results were compared with measured elastic vertical displacement during the passages of freight and passenger trains at two locations, whose sub-ballasts were crushed stone and weathered granite soil, respectively. The calculated vertical displacements of the sub-ballasts are within the order of 0.6mm, and agree well with measured values. The prediction models are thus concluded to work properly in the preliminary investigation.

Radiological and Geochemical Assessment of Different Rock Types from Ogun State in Southwestern Nigeria

  • Olabamiji Aliu Olayinka;Alausa Shamsideen Kunle
    • Journal of Environmental Health Sciences
    • /
    • v.49 no.5
    • /
    • pp.251-261
    • /
    • 2023
  • Background: This paper deals with the study of natural radioactivity in rocks from Ogun State in Southwestern Nigeria. The aim is to determine radiation emissions from rocks in order to estimate radiation hazard indices. Objectives: The following objectives were targeted: 1. To determine radiation emissions from each type of rocks; 2. To estimate radiation hazard indices based on the rocks; 3. To correlate the activity concentrations of radionuclides with major oxides. Methods: The samples were analyzed using a NaI (Tl) gamma ray spectrometric detector and PerkinElmer AAnalyst 400 AAS spectrometer. Results: The activity of 40K, 226Ra, and 232Th were found in order of decreasing magnitude from pegmatite>granite>migmatite. In contrast, lower concentrations were found in shale, phosphate, clay stone, sandstone and limestone. The mean absorbed doses were 125±23 nGyh-1 (migmatite), 74±13 nGy/h (granite), 72±13 nGyh-1 (pegmatite), 64±09 nGyh-1 (quartzite), 45±16 nGyh-1 (shale), 41±09 nGyh-1 (limestone), 41±11 nGyh-1 (clay stone), 24±03 nGyh-1 (phosphate), and 21±10 nGyh-1 (sandstone). The outdoor effective dose rates in all rock samples were slightly higher than the world average dose value of 0.34 mSvy-1. The percentage composition of SiO2 in the rock samples was above 50 wt% except for in the limestone, shale and phosphate. Al2O3 ranged from 4.10~21.24 wt%, Fe2O3 from 0.39~7.5 wt%, and CaO from 0.09-46.6 wt%. In addition, Na2O and K2O were present in at least 5 wt%. Other major oxides, including TiO2, P2O5, K2O, MnO, MgO and Na2O were depleted. Conclusions: The findings suggest that Ogun State may be described as a region with elevated background radiation. It is recommended that houses should be constructed with good cross ventilation and residences should use home radiation monitoring instruments to monitor radon emanating from walls.

Preliminary Structural Geometry Interpretation of the Pyeongchang Area in the Northwestern Taebaeksan Zone, Okcheon Belt: A Klippe Model (옥천대 북서부 태백산지역 평창 일대의 클리페 모델 기반 구조기하 형태 해석 예비 연구)

  • Heunggi Lee;Yirang Jang;Sanghoon Kwon
    • Economic and Environmental Geology
    • /
    • v.56 no.6
    • /
    • pp.831-846
    • /
    • 2023
  • The Jucheon-Pyeongchang area in the northwestern Taebaeksan Zone of the Okcheon fold-thrust belt preserved several thrust faults placing the Precambrian basement granite gneisses of the Gyeonggi Massif on top of the Early Paleozoic Joseon Supergroup and the age-unknown Bangrim Group. Especially, the thrust faults in the study area show the closed-loop patterns on the map view, showing older allochthonous strata surrounded by younger autochthonous or para-autochthonous strata. These basement-involved thrusts including Klippes will provide important information on the hinterland portion of the fold-thrust belt. For defining Klippe geometry in the thrust fault terrains of the Jucheon-Pyeongchang area by older on younger relationship, the stratigraphic position of the age-unknown Bangrim Group should be determined. The Middle Cambrian maximum depositional age by the detrital zircon SHRIMP U-Pb method from this study, together with field relations and previous research results suggest that the Bangrim Group overlies the Precambrian basement rocks by nonconformity and underlies the Cambrian Yangdeok Group (Jangsan and Myobong formations). The structural geometric interpretation of the Pyeongchang area based on newly defined stratigraphy indicates that the Wungyori and Barngrim thrusts are the same folded thrust, and can be interpreted as a Klippe, having Precambrian hanging wall granite gneisses surrounded by younger Cambrian strata of the Joseon Supergroup and the Bangrim Group. Further detailed structural studies on the Jucheon-Pyeongchang area can give crucial insights into the basement-involved deformation during the structural evolution of the Okcheon Belt.

An Experimental Study on the Evaluation of Shear Strength of Weathered Soil Containing Coarse Particles (굵은 입자가 포함된 풍화토의 전단강도 평가에 대한 실험연구)

  • Joon-Seok Kim
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.1
    • /
    • pp.169-176
    • /
    • 2024
  • Purpose: In this paper, an experimental study was conducted to analyze the difference in shear strength caused by the problem of excluding coarse particles due to the size of the test specimen in the direct shear test. Method: A large-scale direct shear test was conducted on three weathered soils containing coarse aggregates with a maximum diameter of 50mm. In addition, a small-scale direct shear test was performed using a sample with a maximum diameter of 5 mm, excluding coarse aggregates. Result: In the case of the small-scale direct shear test, compared to the results of the large-scale direct shear test containing large particles, the internal friction angle was about 2.3% smaller, and there was no significant difference. In terms of cohesion, compared to the large-scale direct shear test, the small-scale direct shear test derived about 80.3% smaller value, showing a relatively large difference. Conclusion: In the large-scale direct shear test, it was analyzed that the coarse particles had a greater impact on the cohesion than the internal friction angle. Therefore, granite weathered clay containing coarse particles is judged to have the same shear strength as the cohesive force that is not affected by vertical stress. In this study, it was analyzed that the small-scale direct shear test, which excludes the coarse particles that are commonly used, provides results on the safety side by excluding the effect of coarse particles.

Concentration of Radioactive Materials for the Phanerozoic Plutonic Rocks in Korea and Its Implication (국내 현생 심성암류의 방사성 물질의 농도 및 의미)

  • Kim, Sung Won
    • Economic and Environmental Geology
    • /
    • v.53 no.5
    • /
    • pp.565-583
    • /
    • 2020
  • In recent years, various social issues related to the natural radioactive elements detected in household goods and building materials are addressed, and should be solved promptly. In Korea, for more than 20 years, the Ministry of Environment has investigated the natural radioactive materials such as heavy metals, uranium, and radon in soil or groundwater. The origins of natural radioactive materials in them may have a close correlation with the geological factors including classification of rocks, petrogenetic origins, and deformation characteristics, but the exact geological correlations are not clarified because of the absence of the government policy preserved in the basement rocks, soils as well as groundwater in fault-related reservoirs. This study aims to perform a research on the correlation between the petrogeneses of the Phanerozoic plutonic rocks and natural radioactive concentrations in rocks (radon, uranium, thorium, potassium etc.) in Korea. Among the Phanerozoic plutonic rocks, alkaline plutonic rocks (syenite, monzonite and monzodiorite and alkali granite) show high U and Th concentrations by high solubilities of U, Th, Zr, REE, and Nb until the most extreme stages of magmatic fractionation (viz. crystal fractionation) due to high magma temperature and high alkalinity tendency. The highly fractionated high-K calalkaline and peraluminous granitic rocks (leucogranite, two-mica granite and leucocratic pegmatite are also U and Th concentrations compared with other less or medium fractionated granitic rocks (diorite, granodiorite and granite). The alkaline plutonic rocks are associated with intracontinental rifting and extensional environment after crustal thickening by collisional and subductional processes. In contrast, the dominant calc-alkaline granitic rocks in Korea are related to the arc environment of the subduction zone. In summary, the trends of the U, Th and K concentration from the Phanerozoic plutonic rocks in Korea are closely linked to the petrogenesis of the rocks in tectonic environment. The preliminary data for gamma-spectrometric mesurments of natural radionuclide contents (226Ra, 232Th and 40K) in the Phanerozoic plutonic rocks show high values in the alkaline and highly fractionated granitic rocks.

Anisotrpic radar crosshole tomography and its applications (이방성 레이다 시추공 토모그래피와 그 응용)

  • Kim Jung-Ho;Cho Seong-Jun;Yi Myeong-Jong
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.09a
    • /
    • pp.21-36
    • /
    • 2005
  • Although the main geology of Korea consists of granite and gneiss, it Is not uncommon to encounter anisotropy Phenomena in crosshole radar tomography even when the basement is crystalline rock. To solve the anisotropy Problem, we have developed and continuously upgraded an anisotropic inversion algorithm assuming a heterogeneous elliptic anisotropy to reconstruct three kinds of tomograms: tomograms of maximum and minimum velocities, and of the direction of the symmetry axis. In this paper, we discuss the developed algorithm and introduce some case histories on the application of anisotropic radar tomography in Korea. The first two case histories were conducted for the construction of infrastructure, and their main objective was to locate cavities in limestone. The last two were performed In a granite and gneiss area. The anisotropy in the granite area was caused by fine fissures aligned in the same direction, while that in the gneiss and limestone area by the alignment of the constituent minerals. Through these case histories we showed that the anisotropic characteristic itself gives us additional important information for understanding the internal status of basement rock. In particular, the anisotropy ratio defined by the normalized difference between maximum and minimum velocities as well as the direction of maximum velocity are helpful to interpret the borehole radar tomogram.

  • PDF

Geochemical exploration for REE occurrence in Nghe An Area within Northern Vietnam (베트남 북부 네안 희토류 산출지의 지구화학탐사)

  • Heo, Chul-Ho;Chung, Ho Tien;Lee, Jae-Ho
    • Economic and Environmental Geology
    • /
    • v.45 no.6
    • /
    • pp.599-622
    • /
    • 2012
  • The phase I soil geochemical exploration was carried out targeting around Chau Binh area far from about 14 km with southeastern direction from Quy Chau within Nghe An province. The interval of sampling are horizontal 300 m with 14 line and longitudinal 500 m with 15 line, resulting in 194 soil samples. Based on the result of the phase I soil geochemical exploration, the phase II detailed pitting survey was carried out targeting the grid point with high TREO content, resulting in 56 soil samples within 7 pits. The geology of survey area are consisted of Ban Chieng biotite granite complex and Dai Loc gneissic granite complex intruding Bu Khang formation comprising of schist, gneiss and limestone. Main mineralization in the study area have the characteristics of occurrence with tin, ruby and REE-bearing monazite(about 300 g/t) and xenotime(about 10 g/t) to be thought as occurring at the alteration zone of granite complex. In order to elucidate the source rock of monazite and xenotime confirmed from heavy sand, soil geochemical exploration was carried out. As a analysis result with ICP-MS on the soil samples from the phase I soil geochemical exploration, total REE oxide content of background amount to about 2 times of crustal abundance, enriching the heavy rare earth(about 2 times) and light rare earth(about 1.84 times). As a analysis result with ICP-MS on the soil samples from the phase II soil detailed pit survey, we identified outcrop considering as economic ore body at the grid point 4-7 pit with N40W attitude. As a synthetic consideration on the phase I soil geochemical exploration and phase II detailed pit survey, we tentatively designated areas considering as the extension of economic ore body with REE anomaly. In the near future, we have the plan to carry out the geophysical exploration and test drilling targeting the interval anticipated to the economic ore body.

Geochemical Exploration for Tri Le REE Occurrence in Nghe An Province within Northern Vietnam (베트남 북부 네안성 칠레 희토류 산출지의 지구화학탐사)

  • Heo, Chul-Ho;Ho, Tien Chung;Lee, Jae-Ho
    • Economic and Environmental Geology
    • /
    • v.47 no.2
    • /
    • pp.147-168
    • /
    • 2014
  • The soil geochemical exploration was carried out targeting around Tri Le area far from about 30 km with northwestern direction from Que Phong within Nghe An province. The interval of sampling are horizontal 200 m interval with 23 line and longitudinal 300 m with 10 line, resulting in 228 soil samples. Based on the result of the soil geochemical exploration, the detailed pitting survey was carried out targeting the grid point with high TREO content, resulting in 75 soil samples within 7 pits. The geology of survey area are consisted of Ban Chieng biotite granite complex and granitic gneiss intruding Ban Khang formation comprising of quartz schist and marble. Main mineralization in the study area have the characteristics of occurrence with tin, ruby and REE-bearing monazite and xenotime to be thought as occurring at the alteration zone of granite complex. In order to elucidate the source rock of monazite and xenotime confirmed from heavy sand, soil geochemical exploration was carried out. As a analysis result with ICP-MS on the soil samples from the soil geochemical exploration, total REE oxide content of background amount to about 2 times of crustal abundance, enriching the heavy rare earth(about 2 times) and light rare earth(about 1.5 times). As a analysis result with ICP-MS on the soil samples from the soil detailed pit survey, we only identified outcrop considering as economic weathered granite body at the grid point 1-10 pit among 7 pits. As a synthetic consideration on the soil geochemical exploration and detailed pit survey, we tentatively designated Tri Le area as no promising target for REE. In 2014, we have the plan to carry out the soil geochemical exploration targeting the extended economic REE ore body in Quy Chau as project area from 2011 to 2012.