• Title/Summary/Keyword: Korean granite

Search Result 1,563, Processing Time 0.023 seconds

A Study on the Applicability of Soil-Media Hydroseeding Measures Using Zoysiagrass's Lateral Stems (한국잔디 줄기를 이용한 식생기반재 뿜어붙이기공법의 적용성 연구)

  • Min, Chang-Hyun;Kim, Nam-Choon;Choi, Joon-Soo;Song, Wonkyong;Joo, Sang-Dae
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.18 no.4
    • /
    • pp.1-14
    • /
    • 2015
  • A manipulation of zoysiagrass's lateral stems and soil-media; used for slope revegetation, is expected to facilitate the production of high-quality grass. To study the influences on the growth of zoysiagrass depending upon various soil-media conditions, two different types of soil are used. The results obtained - through investigation of its cover rates, leaf color and number - are summarized as follows. In mountain regions soil, there are no significant differences in growth and development of grass in treatments: zoysiagrass's lateral stems treatments with 1cm, 2cm, and 3cm soil-media and treatment with only seeding. Zoysiagrass, in most of the treatments, show about the same growth rates, and at the end, fair visual quality. Zoysiagrass's lateral stems treatments with 2cm, 3cm show slightly better growth, however, thickness of soil-media need not be more than 1cm to obtain an expected quality of lawn. In decomposed granite soil, there appears statistical significance in growth of the grass in treatments: zoysiagrass's lateral stems treatments with 1cm, 2cm, and 3cm soil-media and treatment with only seeding. The thicker the soil-media, the better the growth of grass, and that in treatment with seeding-only shows poor quality in general. And therefore, it is efficacious to plant in 3cm soil-media when quick formation of lawn is necessary; however, using 2cm soil-media is ultimately the most cost-efficient way of formation. But, when time allows - that is, more than three months - 1cm soil-media in decomposed granite soil is reasonable to formate just as effective lawn. And so when performing seeding, additional covering, fertilization or increasing the quantity of seed must be considered.

Sulfur and Carbon Isotope Studies of Principal Metallic Deposits in the Metallogenic Province of the Taebaeg Mt. Region, Korea (태백산지구(太白山地區)의 금속광상(金屬鑛床)에 대(對)한 유황(硫黃) 및 탄소안정동위체(炭素安定同位體)에 관(關)한 연구(硏究))

  • Lee, Min Sung
    • Economic and Environmental Geology
    • /
    • v.18 no.3
    • /
    • pp.247-251
    • /
    • 1985
  • The sulfide and carbonate mineral samples for sulfur and carbon isotope studies were collected from Sangdong, Geodo, Yeonhwa, Shinyemi and Janggun mines which are distributed in the Metallogenetic Province of the Taebaeg Mt. Region. The ${\delta}S^{34}$ values of molybdenite, pyrite, arsenopyrite, pyrrhotite, chalcopyrite, sphalerite and galena from the above mines are similar and within the range of +1.66 to +6.77‰ with the exception of chalcopyrite from Geodo mine ranging from -1.58 to 1.96‰, while the sulfide minerals are dominated by positive values between +3.05 and +5.08‰. It is suggested that the major sulfur source is genetically related to the Cretaceous granitic activity. The average ${\delta}C^{13}$ values of calcite from limestone, calcite from calcite vein in ore bodies and granite, and rhodochrosite from ore bodies are -0.60‰, -2.69‰ and -6.00‰, respectively. The data on carbon isotope compositions indicate that the calcite from limestone originated in marine environment, the rhodochrosite in hydrothermal solution, and calcite from calcite vein and granite in the mixing condition of marine and hydrothermal waters. The temperatures of mineralization by the sulfur isotopic composition coexisting pyrite-pyrrhotite from Yeonhwa No.1, sphalerite-galena from Weolam and Dong-jeom of Yeonhwa No.1 mine, sphalerite-galena and pyrite-galena from Janggun mine were $273^{\circ}C$, $460{\sim}511^{\circ}C$, $561{\sim}690^{\circ}C$, $341^{\circ}C$ and $375^{\circ}C$, respectively.

  • PDF

Effects of Forest Environmental Factors and Forest Road Structures on the Stability of Forest Road in Granite Areas (화강암지역의 산림환경 및 도로구조인자가 임도의 안정성에 미치는 영향)

  • Yim, Byung-Jun;Ma, Ho-Seop
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.2 no.3
    • /
    • pp.83-92
    • /
    • 1999
  • To investigate the influence of forest road characteristics and site conditions on the stability of forest-road in granite area, four forest roads had been selected in Kyongbuk regions. The total of 13 road characteristic variables were evaluated by the discriminant analysis. The factors influencing the stability of forest road were bed rock, slope length, coverage, hardness, side-ditch erosion and road width. But aspect and soil texture were not significant for the stability in this area. In the correlation between forest environment and road structure, hardness and bed rock was highly significant in stability group, and coverage and side-ditch erosion was highly significant in instability group. 75 of 175 segments were instable whereas the others were stable. The centroids value by discriminant function in the stability and instability were estimated to 3.0585 and -1.9116, respectively. The stability criterion of forest road was discriminated from the centroids value of the each group. The main factors contributing the stability of forest road were significant in order of side-ditch erosion, coverage, soil texture, elevation, gradient, slope length and construction year. The prediction rate of discriminant function for stability evaluation of forest road was as high as 97.44%. In conclusion, the forest road structure factors such as length, coverage and slope gradient were controlled by construction techniques. If the factors like those should be considered in design, construction and forest road management, the stability of forest road may increase more. And also, it is necessary to take slope protection measures like small terraces and retaining walls for stability of cut slope.

  • PDF

A Study of Characteristics on Weathering for Decomposed Granite Soils in Cutting Slope (화강토 지반 절취사면의 풍화특성에 관한 연구)

  • Lee, Song;Kim, Ju-Hyun
    • Proceedings of the KSR Conference
    • /
    • 2001.05a
    • /
    • pp.451-458
    • /
    • 2001
  • The purpose of this study was to evaluate shear parameters on cutting slope of weathered granite soils by using small dynamic cone penetration test on the very moment of its cutting. The results were : On the relations among N$\_$c/, Li, and CEC, the condition of Li>6%, CEC>14(meq/100g) corresponds to that of N$\_$c/ values of 2∼30, and 3<CEC<14(meq/100g) to N$\_$c/=30∼50. Comparing the smallest penetration depth from two small dynamic cone penetration tests done at 5m below from the top of the slope on April 15th, October 31t. there was a l0cm difference. So we could find out the degree of weathering on the slope. And dividing the difference by 190 days (the whole testing time), we could know it's being weathered 0.052mm each day. The more N. value increases, the more shear parameters(internal friction angle ; $\phi$, cohesion : c) increase at a standard pressure($\sigma$>32㎪). So the condition of N$\_$c/=2∼50 corresponds to that of $\phi$=27∼50, c=12∼49㎪. From the above testing results, the N$\_$c/ values more correspond to $\phi$ values than c values. In conclusion, this study suggests that on small dynamic cone penetration test a penetration boundary line of 5 centimeters is decided at around Li=4%, CEC=3(meq/100g) which is classified as a strong weathering soil. It also shows that as Li increases CEC increases as well, while N$\_$c/ decreases.

  • PDF

Granite Strength Estimation of Construction Considering Surface Roughness Effect on Ultrasonic Velocity Method (화강석 건조물의 표면 거칠기별 초음파속도법에 의한 강도 추정)

  • Kim, Jeong-Sup;Shin, Yong-Seok;Kim, Jeong-Hoon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.1
    • /
    • pp.137-145
    • /
    • 2010
  • The mechanical properties of stone structures are generally characterized according to the strength of the stone used. An ultrasonic velocity method that does not damage cultural heritages is used to measure the strength of stone. However, there is no correction involved for surface roughness and thickness of the stone in the ultrasonic method currently used. In addition, a contact agent such as grease can cause contamination on the surface of a cultural heritage. Accordingly, this study suggests an indirect method of strength estimation formula for stone structures based on the surface roughness of the structure, its thickness, and the type of contact agent. (1) Rock strength estimation formula using ultrasonic velocity method of dabbed finish : $f_{su}=30.51\;Vp^{0.82}(R^2=95)$ (2) Rock strength estimation formula using ultrasonic velocity method of harsh finish : $f_{su}=61.52\;Vp^{0.32}(R^2=92)$.

Weathering and Crack Development in the Rocks of Protecting-Chamber for Standing-Buddha of Mireuk-ri Temple site at Jungwon (중원 미륵리사지 입상석불 보호석실의 암석의 풍화와 균열의 발달양상)

  • Lee, Sang Hun
    • Journal of Conservation Science
    • /
    • v.7 no.2
    • /
    • pp.68-79
    • /
    • 1998
  • The protecting-chamber for a standing Buddha of Mireuk-ri temple site at Jungwon is composed of granite of Cretaceous age which mainly consists of quartz, perthite, plagioclase, and biotite with minor amounts of muscovite, apatite, chlorite, sericite and opaque mineral. There are abundant cracks which may be developed by strong weathering and differential loading by structural unbalances of the whole protecting-chamber. Cracks can be divided into three types based on genesis as those formed by exfoliation, intrinsic, and pressure. The exfoliation occurred along the onion structure of the granite. The pressure cracks are generally superimposed on the exfoliation ones, which might be developed by structural unbalance of the protecting-chamber resulted from differential loading in places. The structural unbalance may be due to change in physical properties of the rocks according to strong weathering, differential settling of basement soil by difference in loading in places of protecting-chamber, westward creep of the basement soil below the West wall and related different resistance of the basement soil against the loading, and partial depression of the West wall. For the conservation of the protecting-chamber, it must be considered the method of stabilizing the basement and treatment of the cracks.

  • PDF

Field Experiments of Consolidant and Filler for Stone Cultural Heritage: Primary Verification Using Ultrasonic Velocity (석조문화재 적용을 위한 강화제 및 충전제 현장실험 : 초음파 속도를 이용한 일차검증)

  • Song, Chi-Young;Jun, Byung-Kyu;Han, Min-Su;Lee, Jang-Jon;Kim, Sa-Dug
    • Journal of Conservation Science
    • /
    • v.25 no.1
    • /
    • pp.87-100
    • /
    • 2009
  • We carried out the effect verification of conservation treatment focusing on basement rock of alkali granite at the Yukjonbul (two-pairs of Buddha Triads) carved on rock cliff of Samneung valley in Namsan mountain of Gyeongju. The conservation treatments were used to ethylsilicate-type rock consolidant and epoxy-type resin. It is treatment method that the epoxy-type resin have been applied one time into the exfoliation area, after rock consolidation treatment have been worked for three times. As the result of measuring ultrasonic velocity, P-wave velocity of the exfoliation area was relatively increased after applied the conservation treatments. The ultrasonic velocity of all area was increased as 27.8%. This result has been proved with consolidation effects by consolidant and filler for stone cultural heritages. The treatment method should be worked about three time to consolidate sufficiently for rocks.

  • PDF

Mechanical Properties of Minerals in Daejeon Granite According to Depths by Dynamic Ultra-micro Hardness (동적 초미소 경도법에 의한 심도별 대전화강암 내 광물들의 역학적 특성)

  • Choi, Junghae;Shin, Juho;Jang, Hyongdoo;Kang, Seong-Seung
    • Tunnel and Underground Space
    • /
    • v.27 no.3
    • /
    • pp.172-184
    • /
    • 2017
  • The hardness and mechanical properties of the minerals in the Daejeon granite according to depths were investigated by indentation test, load-unload test, and cycle test of dynamic ultra-micro hardness. As a result of the tests, it was possible to classify into three mineral groups (Group-1, -2, -3). The Martens hardness was not significantly different between 41 m and 223 m depths in three mode tests. Nevertheless, they showed in the order of a cycle test < load-unload test < indentation test. Considering the average Martens hardness, elastic modulus, and indentation work for each mineral group, their boundaries were relatively clear. In conclusion, A relatively accurate hardness of minerals can be obtained by three mode tests of dynamic ultra-micro hardness. In addtion, it was possible to characterize the elastic modulus and the elastic-plastic properties of the minerals from the load-unload and cycle tests.

A Case Study on the Stability Analysis of a Cutting Slope Composed of Weathered Granite and Soil (화강풍화암 및 풍화토층 지역 깍기 비탈면의 안정성 검토 사례 연구)

  • Han, Kong-Chang;Ryu, Dong-Woo;Cheon, Dae-Sung;Hong, Eun-Soo
    • Tunnel and Underground Space
    • /
    • v.18 no.4
    • /
    • pp.289-299
    • /
    • 2008
  • Based on the case study on the causes for the failure of cutting slope composed of weathered rock and soil, the factors influencing the design of a cutting slope have been examined, This type of rock and soil is widely distributed on the region whose parent rock is granite. To analyze the stability of the cutting slope, the following series of progress has been conducted: (1) ground characterization by geological survey and ground investigation, (2) the safety factor examination by limit equilibrium analysis and numerical analysis and (3) the comparison and analysis of rainfall and failure history. As a result, the main factors to cause the failure is determined to be the decrease of shear strength in the upper parts whose ground condition is weakened during localized heavy rain. Moreover, the analysis indicates the failure is also closely related to the groundwater inflow path. On the base of this investigation, a reinforcement method is proposed to ensure the stability of the cutting slope.

A Study of Cold Room Experiments for Strength Properties of Frozen Soil (Cold Room 실험을 통한 동결토의 강도특성 연구)

  • Seo, Young-Kyo;Kang, Hyo-Sub;Kim, Eun-Sub
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.42-49
    • /
    • 2008
  • Recently many countries have become interested in the development of cold or arctic regions. The construction of engineered structures in those regions demands an understanding of the deformation characteristics of frozen soil. However, an understanding of frozen soil behavior poses difficult problems owing to the complex interaction between the soil particles and the ice matrix. In this research, a series of laboratory tests was performed to investigate the variations in the unconfined compression strength and split tensile strength of weathered granite soil and mixed soil (standard sand and kaolinite) in 15 degrees below zero environments. In the frozen soil tests, specimens were prepared with various water and clay contents, and then the interrelationships between four factors (water content, clay content, unconfined compression strength, split tensile strength) were analyzed. The test results were summarized as follows; as the water content was increased, the unconfined compressive and split tensile strengths also increased in frozen soil. However as the clay content was increased, the unconfined compressive and split tensile strengths were lowered. In the case of frozen soil that contained little clay content, the strength decreased rapidly in mixed soil (standard sand and kaolinite) when the frozen specimen was broken. On the other hand, in the cases of mixed soil that contained a high clay content and weathered granite soil, the strength decreased relatively slowly.