• Title/Summary/Keyword: Korean granite

Search Result 1,562, Processing Time 0.027 seconds

Weathering of Rock Specimens Exposed to Recurrent Freezing and Thawing Cycles (동결-융해 풍화에 의한 암석 물성 변화 양상과 추정에 관한 연구)

  • Ryu, Sung-Hoon;Song, Jae-Joon
    • Tunnel and Underground Space
    • /
    • v.22 no.4
    • /
    • pp.276-283
    • /
    • 2012
  • Changes in rock properties due to freezing and thawing cycles ranging from $-20^{\circ}C$ to $10^{\circ}C$ were checked for the typical Korean rocks: granite (weathered), limestone, sandstone, tuff, shale and basalt. The porosity, seismic velocity, shore hardness and specific gravity were measured every 10 cycles for each type of rock up to 40 cycles. The specific gravity was rarely changed. Granite (w), shale and basalt decreased gradually in their shore hardness and seismic velocity values, these values for limestone, sandstone and tuff changed only a very little. The porosity increased in the granite (w), shale and basalt, whereas in the others it did not change. Due to the low tensile strength with high porosity, granite (w), shale and basalt were susceptible to the F-T cycles. A linear regression equation was calculated based on the experiment results according to properties and types of rock. The relationship between the freeze-thaw sensitivity (=initial porosity/initial tensile strength) and the coefficients of the regression equation was examined. With additional experimental data, the coefficients of the regression equation can be estimated using the F-T sensitivity. This makes it possible to predict the properties of rock as affected by freeze-thaw weathering by only measuring the initial properties without knowledge of the regression equation coefficients for each type of rock.

Evaluation of mechanical properties of KURT granite under simulated coupled condition of a geological repository (복합 처분환경 모사조건에서의 KURT 화강암의 역학적 물성 변화 평가)

  • Park, Seunghun;Kim, Jin-Seop;Kim, Geon Young;Kwon, Sangki
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.4
    • /
    • pp.501-518
    • /
    • 2019
  • The rock properties measured under in-situ geological condition can be used to increase the reliability in numerical simulations with regard to the long-term performance of a high-level waste repository. In this study, the change in mechanical properties of KURT (Korea atomic energy research institute Underground Research Tunnel) granite was evaluated under the simulated THM (Thermo-Hydro-Mechanical) coupled condition due to a deep geological formation in the disposal repository. The rock properties such as uniaxial compression strength, indirect tensile strength, elastic modulus and Poisson's ratio were measured under the coupled test conditions (M, HM, TM, THM). It was found that the mechanical properties of KURT granite is more susceptible to the change in saturation rather than temperature within the test condition of this study. The changes in uniaxial compression strength and indirect tensile strength from the rock samples of dried or saturated conditions showed the maximum relative error of about 20% and 13% respectively under the constant temperature condition. Therefore, it is necessary to use the material properties of rock measured under the coupled THM condition as input parameters for the numerical simulation of long-term performance assessment of a disposal repository

Soil-Water Characteristic Curves for Drying and Wetting Processes in Granite-Weathered Soil Based on Variations in Fine Contents (세립분 함량을 고려한 국내 화강풍화토의 건조 및 습윤 함수특성곡선 분석)

  • Lee, Sangbeen;Ryou, Jae-Eun;Seo, Jinuk;Jung, Jongwon
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.1
    • /
    • pp.47-54
    • /
    • 2024
  • In current slope stability analysis techniques, slope stability is evaluated based on the saturated-soil theory. However, soil-water characteristics change frequently depending on the climate. Therefore, because the saturated soil theory has limitations, the application of the unsaturated soil theory is necessary for slope stability. It is also important to evaluate the engineering properties of unsaturated soil because the capillary absorption capacity is reduced due to heavy rain, thereby causing a reduction in slope stability. In this study, soil-water characteristic tests were performed using four samples with different fine contents (0%, 10%, 20%, and 30%) using granite-weathered soil in domestic production areas. In particular, to consider the previously conducted drying process as well as the evaluation of stability due to heavy rain on the actual slope, a wetting process was conducted, in which the water content was increased. In addition, the van Genuchten (1980) model, which is the most consistent theoretical equation for the experiment, was used with various theoretical equations, and the parameters were analyzed according to the fine content of the granite-weathered soil for the drying and wetting processes.

Genesis and Characteristics of the Soil Clay Minerals Derived from Major Parent Rocks in Korea -I. Rock-forming Minerals and Mineralogical Characteristics of the Parent Rocks (한국(韓國)의 주요(主要) 모암(母岩)에서 발달(發達)된 토양점토(土壤粘土) 광물(鑛物)의 특성(特性)과 생성학적(生成學的) -I. 조암광물(造岩鑛物)과 광물학적(鑛物學的) 특성(特性))

  • Um, Myung-Ho;Lim, Hyung-Sik;Kim, Young-Ho;Um, Ki-Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.24 no.1
    • /
    • pp.1-9
    • /
    • 1991
  • A study was carried out to investigate the composition of rock-forming minerals and mineralogical characteristics of the five major parent rocks in Korea. The identification was done through the analyses of chemical. X-ray diffraction, thermal(DTA, TG), infrared spectroscopic, and microscopic methods. Among these methods, X-ray diffraction was considered to be the most rapid and effective way to identify minerals in the parent rocks. The main rock-forming minerals of the parent rocks were feldspars, quartz, and micas in granite and granite-gneiss, calcite and dolomite in limestone, quartz and calcite in shale, plagioclase and augite in basalt. A small amount of sesquioxides was identified as a accessory mineral by means of DTA from the parent rocks of Weoljeong series(granite) and Cheongsan series(granite-gneiss). The abrasion pH affecting the soil formation ranged from 7.5 to 8.4 in the parent rocks containing ferromagnesian minerals and carbonates. In the granite and granite-gneiss of which the main rock-forming minerals were feldspars and quartz with low content of biotite, the abrasion pH ranged from 6.2 to 6.4. In chemical composition of the parent rocks, Si, AI, and K oxides tented to increase with higher contents of quartz, feldspars, and muscovite, while Fe and Mg oxides with higher content of biotite, chlorite, amphiboles, and augite. Higher ignition loss in limestone and shale resulted in the release of $CO_2$ from calcite and/or dolomite.

  • PDF

The Influence of organic Matter on Soil Aggregation in Forest Soils (삼림토양내(森林土壤內)의 유기물함량(有機物含量)이 토양입단화(土壤粒團化)에 미치는 영향(影響))

  • Park, Gwan Soo;Lee, Soo Wook
    • Journal of Korean Society of Forest Science
    • /
    • v.79 no.4
    • /
    • pp.367-375
    • /
    • 1990
  • In order to determine the effects of bedrock, organic matter, calcium and iron oxide on the soil aggregation, this research has performed with soils from bedrock regions of Limestone, Granite and Granite gneiss. This research was also to estimate how organic matter, calcium and iron oxide influence on soil aggregation under different forest conditions in various bedrock regions. And it also had a purpose to rate physical factors relevant to soil aggregation, their characteristics and aggregate diameter which closely relates to stabilities in the process of soil erosion. The following conclusions have been drawn in response to the overall research objectives. The rates of the soil aggregation on different bedrock regions were 21% in Limestone bedrock, 19.8% in Granite bedrock and 9.9% in Granite gneiss bedrock. A main factor in soil aggregation was the orgainc matter content in soils and the rate of soil aggregation increased in the constant proportion with the organic matter content. The relation could be formulated into Y=4.31X-4.37(Y : aggregation ratio X : organic matter content). The soil aggregation ratio under the deciduous forests eras higher than that under the coniferous forests. It was considered that this resulted from differences in organic matter content. Soil aggregates with larger diameter than 0.5mm were found more in Limestone bedrock than other smaller size soil aggregates of 0.25mm diameter were more distributed in Granite gneiss bedrock. Granite bedrock region had normal distribution in soil aggregate sizes with the highest frequency of 0.5mm diameter. Calcium and iron oxides had only partial influences on the soil aggregation in some specific conditions. But in Limestone bedrock region calcium influenced on the soil aggregation with the organic matter content.

  • PDF

A Study on the Valley Shapes with Different Parent Rocks in Yeongnam Area (영남지역(嶺南地域) 주요(主要) 모암별(母岩別) 곡간(谷間)의 특성(特性)에 관한 연구(硏究))

  • Yun, Eul-Soo;Jung, Yeun-Tae;Kim, Min-Tae;Jung, Ki-Yuol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.3
    • /
    • pp.139-144
    • /
    • 2000
  • This study was conducted to obtain the basic information to increase the practical use of soil survey data through the subdividing of valley shapes with soil sequences due to different parent rocks, and to study the relationship between the valley shapes and parent rock. The various rocks such as sedimentary(gray shale and sand stone) and igneous rocks(granite, granite gneiss and andesite porphyry) which are the major parent rocks in Yeongnam area were investigated. The characteristics of valleys formed and the kinds of soils derived from different rocks were analysed by using aerial photographs and topographical maps scaled 1:5,000. The rill density in igneous rock area was as high as 40. But the rill bifurcation ratio of first order stream was higher in the sedimentary than the igneous rocks except granite area. The mean slope of valleys in igneous areas was about 8%, which was higher than that of the sedimentary areas. The variability of valley width in the complexly metamorphosed rock, such as granite gneiss, and andesite porphyry, was greater than in sedimentary and in granite rocks. Based on the variability of valley widths and valley slopes, it was possible to classify the valleys into two types. The "Uterus-shaped valleys" had wide variability of valley width and were located in the areas of granite gneiss and andesite porphry rocks. while the "Roots-shaped valleys" had narrow variability of valley width and were located in the sedimentary areas. "Uterus-shaped valleys" were typified by having land forms of mountain foot slopes and alluvial fans, and the soil drainage sequences also had complexities. So that, we concluded that the variability of valley width and valley slopes was associated with kinds of parent rocks and metamorphism which influences soil sequence and characteristics.

  • PDF

Granite Dike Swarm and U-Pb Ages in the Ueumdo, Hwaseong City, Korea (경기도 화성시 우음도 일원의 화강암 암맥군과 U-Pb 연령)

  • Chae, Yong-Un;Kang, Hee-Cheol;Kim, Jong-Sun;Park, Jeong-Woong;Ha, Sujin;Lim, Hyoun Soo;Shin, Seungwon;Kim, Hyeong Soo
    • Journal of the Korean earth science society
    • /
    • v.43 no.5
    • /
    • pp.618-638
    • /
    • 2022
  • The Middle Jurassic granite dike swarm intruding into the Paleoproterozoic banded gneiss is pervasively observed in Ueumdo, Hwaseong City, mid-western Gyeonggi Massif. Based on their cross-cutting relationships in a representative outcrop, there are four dikes (UE-A, UE-C, UE-D, UE-E), and depending on the direction, there are three granite dike groups, which are NW- (UE-A dike), NW to WNW- (UE-C dike), and NE-trending (UE-D and UE-E dikes). These granite dikes are massive, medium-to coarse-grained biotite granites, and their relative ages observed in outcrops are in the order of UE-A, UE-D (=UE-E), and UE-C. The geometric analysis of the dikes indicates that the UE-A and UE-C dikes intrude under approximately NE-SW trending horizontal minimum stress fields. The UE-A dike, which showed a relatively low average SiO2 content by major element analysis, is a product of early magma differentiation compared to other dikes; therefore, it is consistent with the relative age of each dike. The 206Pb/238U weighted mean ages for each dike obtained from SHRIMP zircon U-Pb dating were calculated to be 167 Ma (UE-A), 164 Ma (UE-C), 167 Ma (UE-D), and 167 Ma (UE-E), respectively. The samples of the UE-A, UE-D, and UE-E dikes showed very similar ages. The UE-C dike shows the youngest age, which is consistent with the results of the relative age in the outcrops and major element analysis. Therefore, the granite dikes intruded into the Middle Jurassic (approximately 167 and 164 Ma), coinciding with those of the Gyeonggi Massif, where the Middle Jurassic plutons are geographically widely distributed. This result indicates that the wide occurrence of the Middle Jurassic plutons on the Gyeonggi Massif was formed as a result of igneous activity moving in the northwest direction with the shallower subduction angle of the subducting oceanic plate during the Jurassic.

Origin of the Eocene Gyeongju A-type Granite, SE Korea: Implication for the High Fluorine Contents (에오세 경주 A-형 화강암의 기원: 높은 불소 함량에 대한 고찰)

  • Myeong, Bora;Kim, Jung-Hoon;Woo, Hyeong-Dong;Jang, Yun Deuk
    • Economic and Environmental Geology
    • /
    • v.51 no.5
    • /
    • pp.439-453
    • /
    • 2018
  • The Eocene Gyeongju granitoids in SE Korea are alkali feldspar granite (AGR), biotite granite (BTGR), and hornblende biotite granodiorite (HBGD) along Yangsan fault and Ulsan fault. According to their geochemical characteristics, these granitoids are classified as A-type (AGR) and I-type (BTGR and HBGD) granitoids, and regarded that were derived from same parental magma in upper mantle. The hornblende and biotite of AGR as an interstitial phase indicate that influx of F-rich fluid during the crystallization of AGR magma. AGR is enriched LILE (except Sr and Ba) and LREE that indicate the influences for subduction released fluids. The highest HFSE contents and zircon saturation temperature of AGR among the Eocene Gyeongju granitoids may indicate that it was affected by partial melting rather than magma fractionation. These characteristics may represent that the high F contents of AGR was affected by F-rich fluid derived from the subducted slab and partial melting. It corresponds with the results of the REE modeling and the dehydrated fluid component (Ba/Th) modeling showing that AGR (A-type) was formed by the partial melting of BTGR (I-type) with the continual influx of F-rich fluid derived from the subducted slab.

Suitability for Subgrade Material of Weathered Granite Soils in the Gansung area of Gangwon-do (강원도 간성지역에 분포하는 화강풍화토의 도로토공 재료특성 연구)

  • Jeoung, Jae-Hyeung;Yu, Jun;Kim, Jin-Man;Kim, Seung-Hyun;Lim, Kwang-Su
    • The Journal of Engineering Geology
    • /
    • v.21 no.3
    • /
    • pp.239-246
    • /
    • 2011
  • Upon encountering weathering soil at a construction site, it may be necessary to change the design and construction plans for geotechnical structures. When weathering soil is exposed to air, the weathering process proceeds rapidly, resulting in significant damage to geotechnical structures, particle defects, and an increase in moisture sensitivity. The management of weathering-soil compaction is challenging. Because the engineering properties of weathering-soils vary regionally, it is important to report the result of research into the regional characteristics of such soils. At two locations of granite gneiss in the Gansung area of Gangwon-do, geological studies were performed at 22 and 8 sites, respectively. At each site, test samples were collected for analysis by XRD and to measure particle size, consistency, and compaction. To evaluate the suitability of the material for road subgrade, we examined the interrelationship between CBR value and the uniformity coefficient, the 200 sieve passing ratio and the aggregate ${\geq}$ 2 mm) content. We found that for the weathered granite soil, aggregate sized > 2 mm has a significant effect on the CBR value. In addition, the mixing of aggregate sized > 2 mm with sub-quality soil improves the soil condition.

Influence of the Soluble Salt on the Exfoliation of the Stone Monument (수용성염이 석조문화재 표면 박리현상에 미치는 영향)

  • Do, Jin-Young;Lim, Kwon-Woong
    • Journal of Conservation Science
    • /
    • v.22
    • /
    • pp.121-134
    • /
    • 2008
  • The mechanism of stone exfoliation and its cause in relation to chemical weathering by soluble salt were studied. Chemical, mineralogical and physical analysis was performed in exfoliation samples from stone monuments. The representative salt is gypsum in the exfoliation samples. In order to understand the salt reaction, stone samples(tuff and granite) were treated with two type of the salt, gypsum and sodium sulfate, which have different solubility. The capillary water uptakes are slight increased in impregnated with Na2SO4 and weathering simulation of two rock types. It means that the rock is deteriorated in the near of the surface by $Na_2SO_4$. $CaSO_4{\cdot}2H_2O$ bring out the thicker exfoliation than $Na_2SO_4$ because it is penetrated into the deeper zone and amount of accumulated salt is more abundant in the inner part than in the near of the surface. The exfoliation was formed in the tuff by salt treatment and 30cycle of weathering simulation, but there are not significant symptoms of exfoliation in the granite by same condition. This result was caused by the different capillary water uptakes and porosity of the rocks. In the tuff, salt solutions are penetrated into the inner part due to its high capillary water uptakes and porosity but the granite, which has low value relatively, can be formed thinner exfoliation.

  • PDF