• Title/Summary/Keyword: Korean granite

Search Result 1,562, Processing Time 0.024 seconds

A Study on Permeability Variation by Aperture in the Single Discontinuity Considering Pneumatic Fracturing (공압파쇄를 고려한 단일불연속면에서의 간극에 따른 투수성 변화에 대한 연구)

  • 정교철;김기종;부성안;서용석
    • The Journal of Engineering Geology
    • /
    • v.12 no.2
    • /
    • pp.151-166
    • /
    • 2002
  • Groundwater development as a means of acquiring subsidiary water resource is very important for the persistent security of water resource. Nowadays, pneumatic fracturing technology which was developed in the advanced countries is applied for increasing pumping rate and eliminating contaminants. This study gives an experimental data to clarify permeability characteristics of the single discontinuity which is newly developed or increased in aperture by the pneumatic fracturing or damage propagation of the natural barrier for the nuclear waste disposal. On the basis of understanding the relationship between permeability and hydraulic aperture the result could apply as one of the basic data for researches concerned with increasing pumping rate and eliminating contaminants. Hydraulic aperture is decreased exponentially with increasing confining pressure and proportioned to permeability in the same confining pressure. Especially, with the increasing aperture permeability of coarse- and medium- grained granite shows the more rapid increasing than that of fine- grained granite.

Geological Characteristics of a Wetland in Mt. Geumjeong (금정산 산지습지의 지질학적 특성)

  • Cha, Eun-Jee;Hamm, Se-Yeong;Kim, Hyun-Ji;Lee, Jeong-Hwan;Cheong, Jae-Yeol;Ok, Soon-Il
    • Journal of Wetlands Research
    • /
    • v.12 no.2
    • /
    • pp.1-12
    • /
    • 2010
  • This study examined geological characteristics of a wetland in Mountain Geumjeong in Busan Metropolitan City. Field survey and laboratory tests were performed to identify topographic features, geological and structural geological characteristics, rock strength along the distance from the wetland, soil profile in the wetland, and chemical property of the wetland soil. The bedrock of the wetland consists of hornblende granite. Hornblende granite and rhyolitic rock around the wetland have the joints with strikes of N-S, E-W, and NE-SW directions and with higher dips greater than $60^{\circ}$. Lower rock strength and higher weathering grades take place towards the wetlands. According to X-ray diffraction analysis of wetland soil samples, kaolinite, montmorillonite, and gibbsite appear which demonstrate weathered products of feldspars in the hornblende granite. The soil profile in the wetland comprises O, A, B, and C horizons from the land surface. The contents of the organic matters decrease from shallow parts to deeper parts of the soil profile. In addition, $K^+$ and $Na^+$ originating from the weathering of feldspars are dominant components among inorganic ions in the wetland soil.

Petrogenesis of the Skarn at the Dielette, Cotentin, France (디엘레트지역(地域) 스카른의 암석학적(岩石學的) 성인연구(成因硏究))

  • Chang, Ho Wan
    • Economic and Environmental Geology
    • /
    • v.18 no.2
    • /
    • pp.139-150
    • /
    • 1985
  • Skarn at the Dielette formed largely in calc-silicate hornfels at the contact with the Flamanville granite. The skarn consists mainly of garnet and pyroxene, and less frequently vesuvianite. Traversing toward calc-silicate hornfels wall rock from a central zone of the skarn, the general sequence of formation of mineral assemblages is: (1) dark brown garnet (2) pale brown garnet-vesuvianite-pyroxene, and (3) pyroxene-prehnite-scapolite-wollastonite envelopes (designated as transition zone) developed between skarn and calc-silicate hornfels. The central zone of the skarn consists mainly of dark brown garnets (garnet I) that contain little or no pyroxene. The pale brown garnet (garnet II) is associated with pyroxene and vesuvianite. The sequence of these garnets results from the zonal growth outward. There is an abrupt discontinuity in composition between garnet I formed in early stage and garnet II in late stage, while each garnet shows relatively uniform composition. At the zone in contact with the granite, the iron contents of garnets decrease toward the marginal zone of the skarn, from an average value of 36 mole % andradite in garnet I to 18 mole % andradite in garnet II. At the zone distant from the granite, the andradite component decreases from 28 mole % in garnet 1 to 19 mole % in garnet II. The variation of the iron contents of pyroxenes is also similar to that of garnets. The sharp discontinuity in composition of garnets and pyroxenes suggests that the skarn of study area was formed by infiltration metasomatic process. The results of the analyses of mineral assemblages of the transition zone by chemical potential diagrams suggest that the transition zone was made by the diffusion of the elements Ca, K and Fe from the skarn to the calc-silicate hornfels contact zone. The estimated temperatures and $Xco_2$ for the formation of the transition zone show $300^{\circ}C$$440^{\circ}C$ and $0.07{\pm}0.05<Xco_2<0.02{\pm}0.01$ at 1 Kb respectively.

  • PDF

Source Area Investigation and Petrological Characteristics of Rock Properties from the Jeseokri Stone-Lined Tombs in Gimcheon, Korea (김천 제석리 석곽묘 석재의 암석학적 특성과 공급지 해석)

  • Cho, Ji Hyun;Lee, Chan Hee
    • Economic and Environmental Geology
    • /
    • v.51 no.6
    • /
    • pp.595-606
    • /
    • 2018
  • In this study, we investigated the source area and petrological characteristics of rock properties from the Jeseokri stone-lined tombs located in Gimcheon by analyzing its rocks and source rocks. As a result, the Jeseokri stone-lined tombs consists in a total 11 kinds of various rock types. And aplite (34.5%), leucocratic granite (26.9%) and schistose granite (24.4%) have a large percentage of the rock's composition. By examining the possible provenances, the same rock types and the stones of a similar with metamorphic grades are discovered along the Jeseok mountain valley located to the south of tombs. These findings suggest that the rock properties of the Jeseokri stone-lined tomb were supplied from the upper Jeseok mountain valley and about 1.7km away from Jeseokri. This study could be used for the archaeogeological interpretation of funeral culture and conservation data of buried cultural properties in the age.

Radon Concentration in Groundwater of Korea (전국 규모로 본 국내 지하수의 라돈 함량)

  • Cho, Byong-Wook
    • The Journal of Engineering Geology
    • /
    • v.28 no.4
    • /
    • pp.661-672
    • /
    • 2018
  • Radon concentration was measured in a total of 5,453 groundwater samples from wells across Korea. The radon concentrations showed the values ranging from 0.1 Bq/L to 7,218.7 Bq/L, with a median of 48.8 Bq/L which is lower than those of other countries having similar geological conditions. The distribution of radon concentrations was lognormal. The median value is high in the granite areas (63.5-105.1 Bq/L) while it is low in the sedimentary rocks and Cheju volcanic area (16.0-20.3 Bq/L). When grouping the groundwater with well depth, the median radon value is high in weathering and/or upper bedrock zone (61.4 Bq/L) while it is low in alluvium and/or weathering zone (28.5 Bq/L). About 17.7% of the total samples exceeded 148 Bq/L of USEPA guideline value. The exceeding radon ratio more than 148 Bq/L in groundwater is highest in Jurassic granite area, however, the exceeding radon rates more than 300 Bq/L and 500 Bq/L are highest in CGRA area.

Occurrence of Radioactive Minerals and U-Th Geochemistry of the Weolaksan and Sokrisan Granite in the Central Ogcheon Belt (중부 옥천대 월악산과 속리산 화강암의 방사성 광물 산출상태와 U-Th 지구화학)

  • Hwang, Jeong
    • The Journal of Engineering Geology
    • /
    • v.32 no.2
    • /
    • pp.295-310
    • /
    • 2022
  • The Weolaksan and Sokrisan granites yield high SiO2 and alkali (Na2O+K2O) contents and low CaO and P2O5 contents. The Al saturation index is ≥1.3, which indicates that the granites are peraluminous. The mean U and Th contents are 8.3 and 39.3 ppm, respectively, higher than typical Mesozoic granites in South Korea and about twice the global mean for granitic rocks. The causes of such high radioelement contents are related to high degrees of fractionation and the crustal origin of the granites. U- and Thbearing radioactive minerals occur in the granites include zircon, thorite, monazite, xenotime, fergusonite and uraninite. The fact that the mean Th/U ratio of the granites (5.4) is similar to the global average crustal value suggests that the radioelement contents of granite were controlled by the crustal source material. Given the correlation of Zr, Y, and heavy rare earth elements for U and Th, radioelements are more likely hosted by xenotime than zircon and monazite.

Change in the Characteristics of Particle Separation and Particle Size Distribution of Weathered Granite Soil from the Yecheon Area (Eastern South Korea) after Water Washing (물 세척한 예천지역 화강풍화토의 입자분리와 입도분포 변화 특성)

  • Kim, Suk-Joo
    • The Journal of Engineering Geology
    • /
    • v.32 no.2
    • /
    • pp.241-255
    • /
    • 2022
  • In this study, sieve analysis testing was performed on weathered granite soil from Yecheon (eastern South Korea) before and after water washing in accordance with the sieve analysis regulations of KS F 2302. The changes in particle separation and particle size distribution after washing with water were analyzed. Image analysis using an optical microscope revealed that soil particles were separated into smaller particles by water washing. The change in the particle size distribution curve was assessed using five index values. The increase in the fine particle fraction (<0.075 mm) was 13.67%, the increase in the 0.075-0.25 mm fraction was 19.44%, and the mean particle diameter (D50) decreased by 0.663 mm. In addition, the maximum passage width (BM) of the particle size distribution curve increased by 21.08% for the #30 sieve, and the moving area (A) of the particle size distribution curve was 69.28%·mm. These results suggest that washing with water is an effective way to prevent underestimation of the fine particle content in soil.

Submarine Geology of Continental Margin of the East Sea, Korea (한국(韓國) 동해대륙단(東海大陸端) 해저지질(海底地質))

  • Kim, Chong Su
    • Economic and Environmental Geology
    • /
    • v.15 no.2
    • /
    • pp.65-88
    • /
    • 1982
  • In the last ten years, marine geological and geophysical survey and research were conducted by Japanese, Russian and American scientists in the East Sea of Korea (Japan Sea). Many research results were published. However, regional research of the geology of the continental margin of the Korean Peninsula was not conducted. This study has made on attempt to classify submarine strata and stratigraphic boundaries. The study has revealed characters of submarine geology and structure. Isopach maps of each identified stratigraphic unit have been constructed as the results of this study. The study was conducted on the basis of analyses of marine seismic surveys carried out in the continental margin of the East Sea between Kangneung and Pohang. Three depositional basins were identified in the study area and they were named as, Mukho Basin, Hupo Basin and Pohang Basin. The Mukho Basin is developed in continental slope and shelf in the area between Kangneung and Samcheog. Quaternary and Pliocene sediments attain a maximum thickness of 900 m. Basement rocks are interpreted as granite and gneiss. They are correlated with granite-gneiss of the Taebaecksan Series of Pre-cambrian age and the Daebo granite of Jurassic age. The Hupo Basin is developed in the continental shelf between Uljin and Youngdeok. Quaternary and Pliocene sediments attain a maximum thickness of 600 m. Basement rocks were interpreted as granite and gneiss and they are correlated with metamorphic rocks of Pre-cambrian age and the Daebo granites, comprising the Ryongnam Massif. The Pohang Basin is developed in the area between Pohang and Gangu. This basin contains Miocene and older sediments. Basement rocks are not shown. Many faults are developed within the continental shelf and slope. These faults strike parallel with the coast line. A north-south direction is predominant in the southern study area. However, in the northern study area the faults strike north, and north-west. The faults are parallel to each other and are step faults down-thrown to the east or west, forming horst and graben structures which develop into sedimentary basins. Such faults caused the development of submarine banks along the boundary between the continental shelf and slope. This bank has acted as a barrier for deposition in the Hupo Basin. Paleozoic sedimentary rocks distributed widely in the adjacent land area are absent in the Mukho Basin. This suggests that the area of the basin was situated above the sea level until the Pliocene time. The study area contains Pliocene sediments in general. These sediments overlie the basement complex composed of metamorphic rocks, granites, Cretaceous (Kyongsang System) sedimentary rocks and Miocene sedimentary rocks. These facts lead to a conclusion that the continental shelf and slope of the study area were developed as a result of displacements along faults oriented parallel to the present coast line in the post Miocene time.

  • PDF

Characteristics of Rainfall, Geology and Failure Geometry of the Landslide Areas on Natural Terrains, Korea (우리나라 자연사면 산사태지역의 강우, 지질 및 산사태 기하형상 고찰)

  • Kim, Won-Young;Chae, Byung-Gon
    • The Journal of Engineering Geology
    • /
    • v.19 no.3
    • /
    • pp.331-344
    • /
    • 2009
  • Large landslides occurred since 1990 on natural terrain, Korea were reviewed with the existing data to characterize them in terms of the condition of rainfall, geology and geometry. Ten landslide areas over the nationwide are selected for this study. Among them, five areas consist of granite basement, four areas of granite and metamorphic rocks and the remaining an area of gabbro. The basement lithology on which landslides most dominantly occurred is granite, on which 58% of landslides among the total 3,435 are taken place, the next dominant one is metamorphic rocks where 24% of landslides are occurred, and the remaining 18% are on the areas of volcanic and sedimentary rocks which are partly distributed in some areas. The landslide occurrences may depend on the rainfall intensities rather than durations. We applied the theories of Caine's threshold and Olivier's final response coefficient to the Korean cases. The rainfall conditions at the landslide areas were all satisfied enough with the landslide triggering conditions suggested by Caine and Olivier. The triggering mechanism and type of landslides may largely depend on the weathering and geomorphic characteristics of basement lithology. The granite areas are characterized by being relatively shallow but consistent weathering profiles and almost no outcrop, and therefore, shallow translational slides are dominant. Whereas metamorphic areas are characterized by consisting of steep slope, weathered outcrops on ridges and partly on flanks and irregular weathering profiles, and relatively large debris flows are dominant.

Comparison of Thermal Effects of Different School Ground Surface Materials - A Case of Yooljeon Elementary School- (학교운동장 피복물질 간의 온열효과 비교 - 율전초등학교를 대상으로 -)

  • LIM, Joong-Bin;YU, Jinhang;LEE, Ju-Yeol;LEE, Kyoo-Seock
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.2
    • /
    • pp.28-44
    • /
    • 2015
  • Granite soil has been used traditionally as a school playground surface. Natural turf has also been used in some schools. Recently artificial turf has come into common use instead of granite soil or natural turf. Artificial turf playgrounds are used at 174 schools in Seoul, Korea. More than 3,500 artificial turf fields are installed in the United States. Because of the increase of artificial turf usage, there are many studies about the estimation of artificial turf effects to environment. Compared with artificial turf material effects such as characterization of substances released from material, and recognition of volatility of heavy metal into the surrounding environment - air or the percolating rainwater -, less studies for thermal effects of artificial turf playground have been done. Especially, the corresponding studies in Korea are few. Thus, the purpose of this research is to compare the thermal effects of artificial turf on school playground between natural turf and granite soil. In this study, air temperature and Predicted Mean Vote (PMV) were compared in three scenarios by Computational Fluid Dynamics (CFD) model. Additionally, the results were validated through a field measurement. Air temperature decreasing effects by natural turf are greater than those by artificial turf and granite soil at 14:30 on 20th, July 2011. It shows the same decreasing effects at 23:30. However, the difference is less than that of daytime. PMV differences between natural turf and the other two surface covers are large at daytime while those are much less at nighttime. Consequently, air temperature and PMV of artificial turf are the highest among three school playground surface pavements.