DOI QR코드

DOI QR Code

Radon Concentration in Groundwater of Korea

전국 규모로 본 국내 지하수의 라돈 함량

  • Cho, Byong-Wook (Groundwater and Ecohydrology Research Center, Korea Institute of Geoscience and Mineral Resources)
  • 조병욱 (한국지질자원연구원 지하수연구센터)
  • Received : 2018.11.13
  • Accepted : 2018.12.13
  • Published : 2018.12.31

Abstract

Radon concentration was measured in a total of 5,453 groundwater samples from wells across Korea. The radon concentrations showed the values ranging from 0.1 Bq/L to 7,218.7 Bq/L, with a median of 48.8 Bq/L which is lower than those of other countries having similar geological conditions. The distribution of radon concentrations was lognormal. The median value is high in the granite areas (63.5-105.1 Bq/L) while it is low in the sedimentary rocks and Cheju volcanic area (16.0-20.3 Bq/L). When grouping the groundwater with well depth, the median radon value is high in weathering and/or upper bedrock zone (61.4 Bq/L) while it is low in alluvium and/or weathering zone (28.5 Bq/L). About 17.7% of the total samples exceeded 148 Bq/L of USEPA guideline value. The exceeding radon ratio more than 148 Bq/L in groundwater is highest in Jurassic granite area, however, the exceeding radon rates more than 300 Bq/L and 500 Bq/L are highest in CGRA area.

국내 5,453개 지하수공에서 시료를 채취하고 라돈 함량을 분석하였다. 지하수의 라돈 함량은 0.1-7,218.7 Bq/L의 범위, 평균함량은 94.4 Bq/L, 중앙값은 48.8 Bq/L으로 비슷한 지질환경을 갖는 나라의 지하수의 라돈 함량에 비해서는 낮게 나타났다. 전체 지하수의 라돈 함량빈도 분포는 대수정규분포를 보였다. 10개 지질로 구분하면 지질별 지하수의 라돈 중앙값은 화강암에서 높고(63.5-105.1 Bq/L) 퇴적암과 제주화산암(PVOL)에서 낮았다(16.0-20.3 Bq/L). 심도별 지하수의 라돈 함량 중앙값은 풍화대 또는 기반암 상부 구간에서 61.4 Bq/L로 높았으며 충적층 구간에서는 28.5 Bq/L로 낮았다. 전체 지하수중 라돈 함량이 미국환경청(USEPA)의 제안치인 148 Bq/L를 넘는 비율은 17.7%이다. 지질별로 보아 지하수의 라돈 함량이 148 Bq/L를 초과하는 비율은 쥬라기화강암지역이 가장 높다. 그러나 지하수의 라돈 함량이 300 Bq/L, 500 Bq/L 이상인 비율은 백악기화강암(CGRA)지역이 가장 높다.

Keywords

JJGHBG_2018_v28n4_661_f0001.png 이미지

Fig. 1. Location map and simplified geological map of the area.

JJGHBG_2018_v28n4_661_f0002.png 이미지

Fig. 2. The percentage of wells falling into different water use class.

JJGHBG_2018_v28n4_661_f0003.png 이미지

Fig. 3. Distribution diagrams of radon concentration in the groundwaters of the area.

JJGHBG_2018_v28n4_661_f0004.png 이미지

Fig. 4. Spatial distribution of groundwater radon levels on a simplified geological map of the area.

Table 1. Statistical analysis of the radon concentrations in the groundwater with respect to each geology.

JJGHBG_2018_v28n4_661_t0001.png 이미지

Table 2. The sample numbers for radon analysis and the maximum radon values of other contries

JJGHBG_2018_v28n4_661_t0002.png 이미지

Table 3. Concentration ranges of radon in groundwater from various locations

JJGHBG_2018_v28n4_661_t0003.png 이미지

Table 4. Statistical analysis of the radon concentrations in the groundwater with well depth

JJGHBG_2018_v28n4_661_t0004.png 이미지

Table 5. International radon guidance levels (Bq/L) for drinking water

JJGHBG_2018_v28n4_661_t0005.png 이미지

Table 6. Distribution of the radon concentrations in the groundwater from each geology

JJGHBG_2018_v28n4_661_t0006.png 이미지

References

  1. Akerblom, G. and Lindgren, J., 1997, Mapping of groundwater radon potential, European Geologist, 5, 13-22.
  2. Althoyaib, S. S., El-Taher, A., 2015, Natural radioactivity measurements in groundwater from Al-Jawa, Saudi Arabia, Journal of Radioanalytical Nuclear Chemistry, 304, 547-552.
  3. Banks, D., Frengstad, B., Midtgard, A. K., Krog, J. R., Strand, T., 1998, The chemistry of Norwegian groundwaters: I The distribution of radon, major and minor elements in 1,604 crystalline bedrock groundwaters, Total Environment, 222, 71-91.
  4. Barcelona, M. J., Gibb, J. P., Helfrich, J. A., Garske, E. E., 1985, Practical guide for groundwater sampling, SWS Contract Report, 374p.
  5. Cho, B. W., 2017, Radon concentrations in groundwater of the Goesan area, Korea, Journal of Engineering Geology, 22(5), 63-70 (in Korean with English abstract).
  6. Cho, B. W., Sung, I. H., Cho, S. Y., Park, S. K., 2007, A preliminary investigation of radon concentrations in groundwater of South Korea, Journal of the Korean Society of Groundwater Environment, 12(4), 98-104 (in Korean with English abstract).
  7. Cho, J. S., Ahn, J. K., Jim, H. Ch., Lee, D. W., 2004, Radon concentrations in groundwater in Busan measured with a liquid scintillation counter method, Journal of Environmental Radioactivity 78, 105-112.
  8. Cook, P. G., Love, A. J. and Dighton, J. C., 1999, Inferring groundwater flow in fractured rock from dissolved radon, Ground Water, 37(4), 606-610. https://doi.org/10.1111/j.1745-6584.1999.tb01148.x
  9. Cosma, C., Moldovan, M., Dicu, T. and Kovacs, T., 2008, Radon in water from Transyvania (Romania), Radiation Measurements, 43, 1423-1428. https://doi.org/10.1016/j.radmeas.2008.05.001
  10. EURATOM (European Atomic Energy Community), 2013, Council Directive 2013/51/EURATOM of 22 October 2013 Laying Down Requirements for the Protection of the Health of the General Public with Regard to Radioactive Substances in Water Intended for Human Consumption.
  11. Godoy, J. M. and Godoy, M. L., 2006, Natural radioactivity in Brazilian groundwater, Journal of Environmental Radioactivity, 85, 71-83. https://doi.org/10.1016/j.jenvrad.2005.05.009
  12. Graves, B., 1989, Radon, radium, and other radioactivity in ground water, Lewis Publishers Inc., Chelsea.
  13. Han, Y. L., Tom Kuo, M. C., Fan, K. C., Chiang, C. J., and Lee, Y. P., 2004, Radon distribution in groundwater of Taiwan, Hydrogeology Journal, 2006, 14, 173-179. https://doi.org/10.1007/s10040-004-0384-7
  14. Hess, C. T., Michel, T. R., Horton, T. R., Orichard, H. M., and Coniglo, W. A., 1985, The occurrence of radiocativity in public water supplies in the United States, Health Physics, 48(5), 553-586. https://doi.org/10.1097/00004032-198505000-00002
  15. Hwang, J., 2013, Occurrence of U-minerals and sources of U in groundwater in Daebo granite, Daejeon area, Journal of Engineering Geology, 23(4), 399-407 (in Korean with English abstract). https://doi.org/10.9720/kseg.2013.4.399
  16. King, P. T., Michel, J., and Moore, W. S., 1982, Ground water geochemistry of $^{226}Ra$, $^{226}Ra$ and $^{220}Rn$, Geochimica et Cosmochemica Acta, 46, 1173-1182. https://doi.org/10.1016/0016-7037(82)90003-5
  17. KWRC (Korea Water Resources Corporation), 1993, Groundwater resources of Korea, KWRC-93-GR-1, 342p.
  18. Loomis, D. P., 1987, Radon-222 concentration and aquifer lithology in North Carolina, Ground Water Monitoring Review, 7(2), 33-39.
  19. Morland, G., Reimann, C., Strand, T., Skarphagen, H., Banks, D., Bjorvatn, K., Hall, E. M., Siewers, U., 1997, The hydrogeochemistry of Norwegian bedrock groundwater-selected parameters (pH, F, Th, U, Th, Na, Ca) in samples from Vestfold and Hordaland, Norway, NGU Bull, 432, 103-117.
  20. NCRP (National Council on Radiation Protection and Measurements), 1984, Exposures from the uranium series with emphasis on radon and its daughters, NCRP report no. 77.
  21. NHMRC (National Health and Medical Research Council), 2015, Australian Drinking Water Guidelines 6, Version 3.1
  22. NIER (National Institute of Environmental Research), 2012, Study on the naturally occurring radionuclides in groundwater of Korea (12), KIGAM, 245p (in Korean with English abstract).
  23. NIER, 2016, Studies on the naturally occurring radionuclides in groundwater, NIER-RP2016-324, 213p (in Korean with English abstract).
  24. NRC (National Research Council), 1999, Risk assessment of radon in drinking water, National Academies press, Washington.
  25. Pinti, D. L., Retailleau, S., Barnetche, D., Moreira, F., Mortiz, A. M., Larocque, M., Gelinas, Y., Lefebvre, R., Helie, J. F., Valadez, A., 2014, $^{222}Rn$ activity in groundwater of the St. Lawrence Lowlands, Quebec, eastern Canada: relation with local geology and health hazard, Journal of Environmental Radioactivity, 136, 206-217.
  26. Prasad, Y., Prasad, G., Choubey, V. M. and Ramola, R. C., 2009, Geohydrological control on radon availability in groundwater, Radiation Measurements, 44, 122-126. https://doi.org/10.1016/j.radmeas.2008.10.006
  27. Przylibski, T. A. and Gorecka, J., 2014, $^{222}Rn$ activity concentration differences in groundwaters of three Variscan granitoid massifs in the Sudetes (NE Bohemian Massif, SW Poland, Journal of Environmental Radioactivity, 134, 43-53.
  28. Salonen, L. and Hukkanen, H., 1997, Advantages of low-background liquid scintillation alpha-spectrometry and pulse shape analysis in measuring radon, uranium, and radium-226 in groundwater samples, Journal of Radioanalytical Nuclear Chemistry, 226(1), 67-74. https://doi.org/10.1007/BF02063626
  29. Salonen, L., 1994, $^{238}U$ series radionuclides as a source of increased radioactivity in ground water originating from Finnish bedrock, In Proceedings of IAHS Helsinki Conference, "Future Groundwater Resources at Risk," International association of hydrologists scientific publification, 222, 71-84.
  30. Shin, W. S., Oh J. S., Choung, S. W., Cho, B. W., Lee K. S., Yun, U., Woo, N. C. and Kim, H. K., 2016, Distribution and potential health risk of groundwater uranium in Korea, Chemosphere, 163, 108-115. https://doi.org/10.1016/j.chemosphere.2016.08.021
  31. SSI (Swedish Radiation Protection Institute), 1999, Radon legislation and national guidelines.
  32. UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation), 1988, Sources, effects and risks of ionizing radiation, Report to the General Assembly, United Nations, New York, 24-79.
  33. USEPA (United States Environmental Protection Agency), 1999, National primary drinking water regulations; radon-222 proposed rule, Federal Register, 64(211), FR 59246.
  34. USGS (United States Geological Survey), 2011, Trace elements and radon in groundwater across the United States, 1992-2003, National water-quality assessment program, U.S. Geological Survey, scientific investigations report 2011-5059, 115p.
  35. Voutilainen, A., Makelainen, I., Huikuri, P., Salonen, L., 2000, Radon atlas of wells drilled into bedrock in Finland, STUK-A171, Helsinki: Sateilyturvakeskus.
  36. WHO (World Health Organization), 2008, Guidelines for drinking-water quality 3rd edition, Vol. 1 Recommendations, Geneva.
  37. Yun, U., Kim, T. S., Kim, H. K., Kim M. S., Cho, S. Y., Choo, C. O. and Cho, B. W., 2017, Natural radon reduction rate of the community groundwater system in South Korea, Applied Radiation and Isotopes, 126, 23-25. https://doi.org/10.1016/j.apradiso.2017.01.048