• Title/Summary/Keyword: Korean granite

Search Result 1,562, Processing Time 0.026 seconds

Effect of Aggregates Kinds and Superplasticizer on Fundamental Properties of Ultra High Performance Concrete (골재 종류 및 SP제 변화가 초고성능 콘크리트 기초적 특성에 미치는 영향)

  • Lee, Hong-Kyu;Jung, Sang-Woon;Jo, Man-Ki;Han, Dong-Yeop;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.55-56
    • /
    • 2014
  • In this research, the effect of types of aggregate and SP on fundamental properties of ultra-high performance concrete of 80 MPa of compressive strength was evaluated to provide solution for high cost of ultra-high performance concrete. As the results of a series of tests, the mixture using limestone and silica aggregates showed improved workability rather than the mixture using granite aggregate. For compressive strength of UHPC, the UHPC mixtures using limestone and silica aggregates showed higher compressive strength than the UHPC mixture using granite aggregate while all mixtures satisfied target compressive range.

  • PDF

Frost Heaving Pressure Characteristics of Frozen soils with Frost-Susceptibility and Degree of Saturation (흙의 동상민감성과 포화도를 고려한 동상팽창압 특성)

  • 신은철;박정준;김종인
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.329-336
    • /
    • 2002
  • The earth structures and in-ground LNG tank, and buildings can be constructed with using artificial freezing method on the reclaimed land. In this study, upon freezing a saturated soil in a closed-system from the top, a considerable pressure was developed. The pressure is the result of the surface energy of a curved ice-water interface. The most significant of these parameters will have the greatest effect on the classification. In order to establish frost-susceptibility criteria based on frost heaving expansion pressure, more soils have to be tested. This study was initiated to investigate the soils frost heaving expansion pressure and moisture characteristics resulting from freezing and freezing-thawing cycle process. Weathered granite soils, sandy soil, sandy soil were used in the laboratory freezing test subjected to thermal gradients under closed- systems.

  • PDF

Mechanical Properties of Artificial Aggregate Concrete using the Crushed-stone Sludge (석분 슬러지를 사용한 인공골재 콘크리트의 역학특성)

  • Hong, Ki Nam;Park, Jae Kyu
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.6
    • /
    • pp.127-132
    • /
    • 2012
  • In this study, ambient temperature curing artificial aggregate were developed by using crushed-stone sludge. In order to evaluate the mechanical properties, the artificial aggregate was tested on 7 items. Test results showed that the artificial aggregate mostly satisfied the basic requirements of normal aggregate. The concrete with the artificial aggregate made by weathered rock and granite sludge was tested on the compressive test and flexural test. From the test results, It is confirmed that the concrete with the granite artificial aggregate develope the higher compressive strength than the crushed rock aggregate and the concrete with artificial aggregate concrete have the lower elastic modulus and flexural strength than the concrete with crushed rock aggregate.

Thermal Properties of Granite from the Central Part of Korea (한국 중부 지역의 화강암 열물성)

  • Kim, Jongchan;Lee, Youngmin;Koo, Min-Ho
    • Economic and Environmental Geology
    • /
    • v.47 no.4
    • /
    • pp.441-453
    • /
    • 2014
  • Thermal and physical properties were measured on 206 Jurassic granite samples obtained from three boreholes in the central part of Korea. Thermal conductivity(${\lambda}$), thermal diffusivity(${\alpha}$), and specific heat(Cp) were measured in a laboratory; the average values are ${\lambda}$=2.813 W/mK, ${\alpha}=1.296mm^2/sec$, and Cp=0.816 J/gK, respectively. In addition, porosity(${\phi}$), and dry and saturated density(${\rho}$) were measured in the laboratory; the average values are ${\phi}$=0.01, ${\rho}(dry)=2.662g/cm^3$ and ${\rho}(saturated)=2.67g/cm^3$, respectively. Thermal diffusivity of 10 granite samples were measured with increasing temperature from $25^{\circ}C$ to $200^{\circ}C$. In this study, we found that thermal diffusivity at $200^{\circ}C$ is about 30% lower than thermal diffusivity at $25^{\circ}C$. In correlation analysis, thermal conductivity increases with increasing thermal diffusivity. However, thermal conductivity does not show good correlation with porosity and density. Consequently, we know that thermal conductivity of granite would be more influenced by mineral composition than by porosity. We also derived ${\rho}=-2.393{\times}{\phi}+2.705$ from density and porosity data. XRD and XRF analysis were performed to investigate effects of mineral and chemical composition on thermal conductivity. From those results, we found that thermal conductivity increases with increasing quartz and $SiO_2$, and decreases with increasing albite and $Al_2O_3$. Regression analysis using those mineral and chemical composition were carried out ; we found $K=0.0294V_{Quartz}+1.93$ for quartz, $K=0.237W_{SiO_2}-14.09$ for $SiO_2$, and $K=0.053W_{SiO_2}-0.476W_{Al_2O_3}+6.52$ for $SiO_2$ and $Al_2O_3$. Specific gravities were measured on 10 granite samples in the laboratory. The measured specific gravity depends on chemical compositions of granite. Therefore, specific gravity can be estimated by the felsic-mafic index(F) that is calculated from chemical composition. The estimated specific gravity ranges from 2.643 to 2.658. The average relative error between measured and estimated specific gravities is 0.677%.

Occurrence Characteristics and Existing Forms of U-Th Containing Minerals in KAERI Underground Research Tunnel(KURT) Granite (한국원자력연구원 지하처분연구시설(KURT) 화강암의 U-Th 함유광물 산출특성 및 존재형태)

  • Cho, Wan Hyoung;Baik, Min Hoon;Park, Tae-Jin
    • Economic and Environmental Geology
    • /
    • v.50 no.2
    • /
    • pp.117-128
    • /
    • 2017
  • Occurrence characteristics and existing forms of U-Th containing minerals in KURT (KAERI Underground Research Tunnel) granite are investigated to understand long-term behavior of radionuclides in granite considered as a candidate rock for the geological disposal of high-level radioactive waste. KURT granite primarily consists of quartz, feldspar and mica. zircon, REE(Rare Earth Element)-containing monazite and bastnaesite are also identified. Besides, secondary minerals such as sericite, microcline and chlorite including quartz vein and calcite vein are observed. These minerals are presumed to be accompanied by a post-hydrothermal process. U-Th containing minerals are mainly observed at the boundaries of quartz, feldspar and mica, mostly less than $30{\mu}m$ in size. Quantitative analysis results using EPMA (Electron Probe Micro-Analyzer) show that 74.2 ~ 96.5% of the U-Th containing minerals consist of $UO_2$ (3.39 ~ 33.19 wt.%), $ThO_2$ (41.61 ~ 50.24 wt.%) and $SiO_2$ (15.43 ~ 18.60 wt.%). Chemical structure of the minerals calculated using EPMA quantitative analysis shows that the U-Th minerals are silicate minerals determined as thorite and uranothorite. The U-Th containing silicate minerals are formed by a magmatic and hydrothermal process. Therefore, KURT granite formed by a magmatic differentiation is accompanied by an alteration and replacement owing to a hydrothermal process. U-Th containing silicate minerals in KURT granite are estimated to be recrystallized by geochemical factors and parameters such as temperature, pressure and pH owing to the hydrothermal process. By repeated dissolution/precipitation during the recrystallization process, U-Th containing silicate minerals such as thorite and uranothorite are formed according to the variation in the concentrated amount of U and Th.

Classification of Weathering for the Granite and Granite Gneiss in Okcheon Belt-Jecheon${\cdot}$Geumsan${\cdot}$Gimcheon in Korea (옥천대지역 -제천${\cdot}$금산${\cdot}$김천 - 에 분포하는 화강암 및 화강 편마암의 풍화분류에 관한 고찰)

  • Woo, Ik;Park, Hyuk-Jin
    • Economic and Environmental Geology
    • /
    • v.37 no.3
    • /
    • pp.355-364
    • /
    • 2004
  • A study on the weathering grade classification has been performed for granite and granite gneiss in Korea. The qualitative classification criteria of weathering were reviewed and then modified with field studies for the weathered rock masses. The thin section observations and XRD analyses for the different weathering grades rock samples showed the petrographical and petrophysical difference with respect to the weathering : the proportion of weathering-resistant minerals suck at quartz and orthoclase has a tendency to increase with the development of weathering, but that of weathering-sensible minerals such as anorthite and biotite is decreased. The ranges of physical and mechanical rock properties for different weathering grades were obtained from the laboratory rock tests and field tests for the studied rocks. And then, along with $RDI_{sq}$(Fookes et al., 1988), the weathering index $I_{a}$, (Woo, 2003) has been developed in this study to demarcate the weathering grade. Those two indices rely mainly on the water absorption ratio of rock and on the different rock strength. The range of these weathering indices have been determined with the physical and mechanical rock properties that can be obtained from simple field or laboratory tests in 4 grades $I_{a}$> 7 for F, 3.5 < $I_{a}$ < 10 for SW, 1.0 $I_{a}$< 6.0 for MW and $I_{a}$< 2.5 for HW. Consequently, the weathering index could be utilized to classify quantitatively the rock weathering grade, especially for the studied granites and the granite gneiss in Korea.