• Title/Summary/Keyword: Korean geostationary satellite

Search Result 427, Processing Time 0.021 seconds

ON-ORBIT THERMAL ANALYSIS FOR THE GEOSTATIONARY OCEAN COLOR IMAGER OF A GEOSTATIONARY SATELLITE (정지궤도위성의 해양관측센서 임무 궤도 열해석)

  • Kim, Jung-Hoon;Jun, Hyoung-Yoll
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.135-141
    • /
    • 2009
  • A preliminary thermal analysis is performed for the optical payload system of a geostationary satellite. The optical payload considered in this paper is GOCI(Geostationary Ocean Color Imager) of COMS of Korea. The radiative and conductive thermal models are employed in order to predict thermal responses of the GOCI on the geostationary orbit. According to the results of this analysis are as follows: 1) the GOCI instrument thermal control is satisfactory to provide the temperatures for the GOCI performances, 2) the thermal control is defined and interfaces are validated, and 3) the entrance baffle temperature is found slightly out its specification, therefore further detailed analyses should be continued on this element.

  • PDF

The Study of Pressurant Inflow Prediction Using Temperature Change of Geostationary Satellite Propellant System (정지궤도 인공위성 추진시스템의 온도변화를 통한 배관내 가압제 유입 예측기법 연구)

  • Park Eung Sik;Jun Hyoung Yoll;Park Bong Kyu;Han Cho Young;Choi Seong Bong;Kim Yong Min
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.96-99
    • /
    • 2005
  • The geostationary satellite propulsion system has thermistors which can measure liquid propellant temperature at tanks, pipes and etc. In the satellite propulsion system with several tanks, the propellant in the tanks is moved by temperature change and this temperature pattern is constant. In this paper, the temperature change pattern of KOREASAT 1 propulsion system is compared and the prediction study of pressurant inflow using temperature change of geostationary satellite propulsion system is described.

  • PDF

THERMAL MODEL CORRELATION OF A GEOSTATIONARY SATELLITE (정지궤도 위성의 열해석 모델 보정)

  • Jun, H.Y.;Kim, J.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.230-235
    • /
    • 2011
  • COMS (Communication, Ocean and Meteorological Satellite) is a geostationary satellite and was developed by KARI for communication, ocean and meteorological observations. COMS was tested under vacuum and very law temperature conditions in order to correlate thermal model and to verify thermal design. The test was performed by using KARI large thermal vacuum chamber. The COMS S/C thermal model was successfully correlated versus the 2 thermal balance test phases. After model correlation, temperatures deviation of all individual unit were less than $5^{\circ}C$ and global deviation and standard deviation also satisfied the requirements, less than $2^{\circ}C$ and $3^{\circ}C$. The final flight prediction was performed by using the correlated thermal model.

  • PDF

THERMAL MODEL CORRELATION OF A GEOSTATIONARY SATELLITE (지구 정지궤도 위성의 열해석 모델 보정)

  • Jun, H.Y.;Kim, J.H.
    • Journal of computational fluids engineering
    • /
    • v.16 no.3
    • /
    • pp.59-65
    • /
    • 2011
  • COMS (Communication, Ocean and Meteorological Satellite) is a geostationary satellite and was developed by KARI for communication, ocean and meteorological observations. COMS was tested under vacuum and very low temperature conditions in order to correlate thermal model and to verify thermal design. The test was performed by using KARI large thermal vacuum chamber. The COMS S/C thermal model was successfully correlated versus the 2 thermal balance test phases. After model correlation, temperatures deviation of all individual units were less than $5^{\circ}C$ and global deviation and standard deviation also satisfied the requirements, less than $2^{\circ}C$ and $3^{\circ}C$. The final flight prediction was performed by using the correlated thermal model.

COMS GTO Injection Propellant Estimation using Monte-Carlo Method (몬테카를로방법을 이용한 천리안위성 궤도전이 소요추진제량 추정에 관한 연구)

  • Park, Eungsik;Huh, Hwanil
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.1
    • /
    • pp.62-71
    • /
    • 2015
  • Geostationary satellites use the thruster in order to control the location change and mount the suitable amount of liquid propellant depending on the operating lifetime. Therefore the lifetime of the geostationary satellite depends on the residual propellant amount and the precise residual propellant gauging is very important for the mitigation of economic losses arised from premature removal of satellite from its orbit, satellites replacement planning, slot management and so on. The propellant gauging methods of geostationary satellite are mostly used PVT method, thermal mass method and bookkeeping method. In this paper, we analysis the modeling of COMS(Communication, Ocean & Meteorological Satellite) bipropellant system for bookkeeping method and COMS GTO(Geostationary Transfer Orbit) injection propellant estimation using Monte-Carlo method.

A Calculation of the Cosmic Radiation Dose of a Semiconductor in a Geostationary Orbit Satellite Depending on the Shield Thickness (차폐체 두께에 따른 정지궤도위성용 반도체의 우주방사선 피폭 계산)

  • Heo, Jeong-Hwan;Ko, Bong-Jin;Chung, Bum-Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.6
    • /
    • pp.476-483
    • /
    • 2009
  • Cosmic ray is composed of nuclear particles moving at a light speed. The cosmic ray affects the performance and the reliability of semiconductor devices by ionizing the semiconductor material. In this study, the radiation effects of protons, electrons, and photons, which compose the cosmic ray, on the GOS(Geostationary Orbit Satellite) were evaluated using the Monte-Carlo N-Particle code. The GOS was chosen due to the comparatively long exposure to the cosmic ray as it stays in the geostationary orbit more than 10 years. As the absorbed dose of semiconductor from electrons is much larger than those of protons, photons, and the secondary radiation, most of the radiation exposure of the semiconductors in the GOS results from that of electrons. When we compare the calculated absorbed dose with the radio-resistance of semiconductor, the Intel 486 of the Intel company is not suitable for the GOS applications due to its low radio-resistance. However RH3000-20 of MIPS and Motorola 602/603e can be applied to the Satellite when the aluminium shield is thicker than 3 mm.

Innovative Geostationary Communication and Remote Sensing Mutli-purpose Satellite Program in Korea-COMS Program

  • Baek, Myung-Jin;Park, Jae-Woo
    • Journal of Satellite, Information and Communications
    • /
    • v.2 no.2
    • /
    • pp.29-35
    • /
    • 2007
  • COMS satellite is a multipurpose satellite in the geostationary orbit, which accommodates multiple payloads of the Ka band Satellite Communication Payload, Meteorological Imager, and Geostationary Ocean Color Imager into a single spacecraft platform. In this paper, Korea's first innovative geostationary Communication, Ocean and Meteorological Satellite (COMS) program is introduced which is fully funded by Korean Government. The satellite platform is based on the Astrium EUROSTAR 3000 communication satellite, but creatively combined with MARS Express satellite platform to accommodate three different payloads efficiently for COMS. The goals of the Ka band satellite communication mission are to in-orbit verify the performances of advanced communication technologies and to experiment wide-band multi-media communication service. The Meteorological Imager mission is to continuously extract meteorological products with high resolution and multi-spectral imager, to detect special weather such as storm, flood, yellow sand, and to extract data on long-term change of sea surface temperature and cloud. The Geostationary Ocean Color Imager mission aims at monitoring of marine environments around Korean peninsula, production of fishery information (Chlorophyll, etc.), and monitoring of long-term/short-term change of marine ecosystem. The system design difficulties are in the different kinds of payload mission requirements of communication and remote sensing purposes and how to combine them into one to meet the overall satellite requirements. In this paper, Ka band communication payload system is more highlighted.

  • PDF

DEVELOPMENT OF THERMAL ANALYSIS PROGRAM FOR HEAT PIPE INSTALLED PANEL OF GEOSTATIONARY SATELLITE (히트 파이프가 장착된 정지궤도 위성 패널 열해석 프로그램 개발)

  • Jun, Hyoung-Yoll;Kim, Jung-Hoon;Han, Cho-Young;Chae, Jong-Won
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.416-421
    • /
    • 2010
  • The north and south panel of a geostationary satellite are used for radiator panels to reject internal heat dissipation of electronics units and utilize several heat pipe networks to control the temperatures of units and the satellite within proper ranges. The design of these panels is very important and essential at the conceptual design and preliminary design stage so several thousands of nodes of more are utilized in order to perform thermal analysis of panel. Generating a large number of nodes(meshes) of the panel takes time and is tedious work because the mesh can be easily changed and updated by locations of units and heat pipes. Also the detailed panel model can not be integrated into spacecraft thermal model due to its node size and limitation of commercial satellite thermal analysis program. Thus development of a program was required in order to generate detailed panel model, to perform thermal analysis and to make a reduced panel model for the integration to the satellite thermal model. This paper describes the development and the verification of panel thermal analysis program with ist main modules and its main functions.

  • PDF

Benefits of the Next Generation Geostationary Meteorological Satellite Observation and Policy Plans for Expanding Satellite Data Application: Lessons from GOES-16 (차세대 정지궤도 기상위성관측의 편익과 활용 확대 방안: GOES-16에서 얻은 교훈)

  • Kim, Jiyoung;Jang, Kun-Il
    • Atmosphere
    • /
    • v.28 no.2
    • /
    • pp.201-209
    • /
    • 2018
  • Benefits of the next generation geostationary meteorological satellite observation (e.g., GEO-KOMPSAT-2A) are qualitatively and comprehensively described and discussed. Main beneficial phenomena for application can be listed as tropical cyclones (typhoon), high impact weather (heavy rainfall, lightning, and hail), ocean, air pollution (particulate matter), forest fire, fog, aircraft icing, volcanic eruption, and space weather. The next generation satellites with highly enhanced spatial and temporal resolution images, expanding channels, and basic and additional products are expected to create the new valuable benefits, including the contribution to the reduction of socioeconomic losses due to weather-related disasters. In particular, the new satellite observations are readily applicable to early warning and very-short time forecast application of hazardous weather phenomena, global climate change monitoring and adaptation, improvement of numerical weather forecast skill, and technical improvement of space weather monitoring and forecast. Several policy plans for expanding the application of the next generation satellite data are suggested.

Validation of Geostationary Earth Orbit Satellite Ephemeris Generated from Satellite Laser Ranging

  • Oh, Hyungjik;Park, Eunseo;Lim, Hyung-Chul;Lee, Sang-Ryool;Choi, Jae-Dong;Park, Chandeok
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.4
    • /
    • pp.227-233
    • /
    • 2018
  • This study presents the generation and accuracy assessment of predicted orbital ephemeris based on satellite laser ranging (SLR) for geostationary Earth orbit (GEO) satellites. Two GEO satellites are considered: GEO-Korea Multi-Purpose Satellite (KOMPSAT)-2B (GK-2B) for simulational validation and Compass-G1 for real-world quality assessment. SLR-based orbit determination (OD) is proactively performed to generate orbital ephemeris. The length and the gap of the predicted orbital ephemeris were set by considering the consolidated prediction format (CPF). The resultant predicted ephemeris of GK-2B is directly compared with a pre-specified true orbit to show 17.461 m and 23.978 m, in 3D root-mean-square (RMS) position error and maximum position error for one day, respectively. The predicted ephemeris of Compass-G1 is overlapped with the Global Navigation Satellite System (GNSS) final orbit from the GeoForschungsZentrum (GFZ) analysis center (AC) to yield 36.760 m in 3D RMS position differences. It is also compared with the CPF orbit from the International Laser Ranging Service (ILRS) to present 109.888 m in 3D RMS position differences. These results imply that SLR-based orbital ephemeris can be an alternative candidate for improving the accuracy of commonly used radar-based orbital ephemeris for GEO satellites.