Purpose: According to the development of CT scanner in PET/CT system, the role of CT unit as a diagnostic tool has been more important. To improve the diagnostic ability of CT scanner, it is a key aspect that CT scanning has to be performed with high dose energy and intravenous (IV) contrast. So we investigated the effect of IV contrast media on the maximum SUV (maxSUV) of normal tissues and pathologic lesions using PET/CT scanner with high dose CT scanning. Materials & Methods: The study enrolled 13 patients who required PET/CT evaluation. At first, the patients were performed whole body non-contrast CT (NCCT-120 kVp, 130 mAs) scan. Then contrast enhanced CT (CECT) scan was performed immediately. Finally PET scan was followed. The PET omission data were reconstructed twice, once with the NCCT and again with the CECT. We measured the maxSUV of 10 different body regions that were considered as normal in ail patients. Also pathologic lesions were investigated. Results: There were not seen focal artifacts in PET images based on CT with IV contrast agent. Firstly, 130 normal regions in 13 patients were evaluated. The maxSUV was significantly different between two PET images (p<0.00)). The maxSUV was $1.1{\pm}0.5$ in PET images with CECT-corrected attenuation and $1.0{\pm}0.5$ in PET images with NCCI-corrected attenuation. The limit of agreement was $0.1{\pm}0.3$ in Bland-Altman analysis. Especially there were significant differences in 6 of 10 regions, apex and base of the right lung, ascending aorta, segment 6 & segment 8 of the liver and spleen (p<0.05). Secondly, 39 pathologic lesions were evaluated. The maxSUV was significantly different between two PET images (p<0.001). The maxSUV was $4.7{\pm}2.0$ in PET images with CECT-corrected attenuation and $4.4{\pm}2.0$ in PET images with NCCT-corrected attenuation. The limit of agreement was $0.4{\pm}0.8$ in Bland-Altman analysis. Conclusion: Although there were increases of maxSUVs in the PET images based on CT with IV contrast agent, it was very narrow in the range of limit of agreement. So there was no significant effect to clinical interpretation for PET images that were corrected attenuation with high dose CT using IV contrast.
Purpose: The aim of this study was to evaluate the influence of leptin on biochemical markers of bone metabolism in childhood obesity. Methods: A total of 50 male children (25 obese and 25 controls) were recruited from the pediatric outpatient clinic at the Chosun University Hospital from November 1st 2005 to May 30th 2006. BMI, body fat percentage, serum leptin, bone-specific alkaline phosphatase (B-ALP), C-terminal propeptide of type 1 collagen (CICP), total deoxypyridinoline crosslinks (total DPD) were measured. The correlations of leptin with BMI, body fat percentage, B-ALP, CICP, total DPD were analyzed by Pearson's correlation. In a multiple stepwise regression analysis, leptin after correction for body weight was evaluated if there was a correlation with biochemical markers of bone formation and resorption respectively. Results: The leptin levels of the obese group were significantly higher than those of the control group (p=0.012). In the obese group, the leptin level was significantly positively correlated with the BMI (r=0.551, p=0.01) and the percentage of body fat (r=0.584, p=0.018). In the obese group, of bone markers, B-ALP (r=-0.613, p=0.026) and CICP (r=-0.583, p=0.037) were negatively correlated with leptin. B-ALP (r=-0.728, p=0.007) and CICP (r=-0.684, p=0.014) were negatively correlated with leptin when corrected for body weight. In the control group, bone markers were not correlated with leptin. In the multiple stepwise regression analyses, there was a negative correlation between the leptin and B-ALP (Y=-39.653X+356.341, p=0.026), CICP (Y=-13.437X+ 116.013, p=0.037) respectively in the obese group. Conclusion: Leptin was a significant factor in the bone formation but not in bone resorption in childhood obesity.
Jeong, Taeyang;Woo, Nam C.;Shin, Woo-Jin;Bong, Yeon-Sik;Choi, Seunghyun;Kim, Youn-Tae
Economic and Environmental Geology
/
v.50
no.6
/
pp.537-544
/
2017
Stable carbon isotope ratio of carbon dioxide (${\delta}^{13}C_{CO2}$) is used as an important indicator in the researches for global climate change and carbon capture and sequestration technology. The ${\delta}^{13}C$ value has been usually analyzed with Isotope Ratio Mass Spectrometer (IRMS). Recently, the use of Laser Absorption Spectrometry (LAS) is increasing because of the cost efficiency and field applicability. The purpose of this study was to suggest practical procedures to prepare laboratory reference gases for ${\delta}^{13}C_{CO2}$ analysis using LAS. $CO_2$ gas was adjusted to have the concentrations within the analytical range. Then, the concentration of $CO_2$ was assessed in a lab approved by the Korea Laboratory Accreditation Scheme and the ${\delta}^{13}C_{CO2}$ value was measured by IRMS. When the instrument ran over 12 hours, the ${\delta}^{13}C$ values were drifted up to ${\pm}10$‰ if the concentration of $CO_2$ was shifted up to 1.0% of relative standard deviation. Therefore, periodical investigation of analytical suitability and correction should be conducted. Because ${\delta}^{13}C_{CO2}$ showed the dependency on $CO_2$ concentration, we suggested the equation for calibrating the concentration effect. After calibration, ${\delta}^{13}C_{CO2}$ was well matched with the result of IRMS within ${\pm}0.52$‰.
Kim, Sung Min;Cheon, Gyu Rak;Kim, Young Wook;Kim, Joon Hyung;Lee, Ho Hak;Hong, Soon Chang;Lee, Seung Hee;Park, Sang Joon;Chung, Joon Oh;Kim, Yun Kwon;Kim, So Yon;Kim, Young Jung;Cho, Min Koo;Lee, Gwon Jun;Lee, Kyung In
Tuberculosis and Respiratory Diseases
/
v.55
no.6
/
pp.560-569
/
2003
Background : A large number of pollutants such as sulfur dioxide, nitric oxide, carbon monoxide, particulate matter, and ozone influence on the body. These pollutants put a burden on the lung and the sequelae resulting from the oxidative stress are thought to contribute to the development of fibrotic lung disease, emphysema, chronic bronchitis and lung cancer. Also, carbon monoxide generated from the incomplete combustion of carbon-containing compounds is an important component of air pollution caused by traffic exhaust fumes and has the toxic effect of tissue hypoxia and produce various systemic and neurologic complications. The objective of this study is to compare the difference of pulmonary function and serum carboxyhemoglobin(CO-Hb) level between the traffic policemen and clerk policemen. Method : Three hundred and twenty-nine of traffic policemen, and one hundred and thirty clerk policemen were included between 2001 May and 2002 August. The policemen who took part in this study were asked to fill out a questionnaire which included questions on age, smoking, drinking, years of working, work-related symptoms and past medical history. The serum CO-Hb level was measured by using carboxyoximeter. Pulmonary function test was done by using automated spirometer. Additional tests, such as elecrocardiogram, urinalysis, chest radiography, blood chemistry, and CBC, were also done. Results : $FEV_1(%)$ was $97.1{\pm}0.85%$, and $105.7{\pm}1.21%$(p<0.05). FVC(%) was $94.6{\pm}0.67%$, and $102.1{\pm}1.09%$, respectively(p<0.05). Serum CO-Hb level was $2.4{\pm}0.06%$, and $1.8{\pm}0.08%$(p<0.05). After correction of confounding factors (age, smoking), significant variables were FVC(%), $FEV_1(%)$ and serum CO-Hb level(%)(p<0.05). Conclusion : Long exposure to air pollution may influence the pulmonary function and serum CO-Hb level. But, further prospective cohort study will be needed to elucidate detailed influences of specific pollutants on pulmonary function and serum carboxyhemoglobin level.
Currently, as a consequence of PACS (Picture Archiving Communication System) implementation many hospitals are replacing conventional film-type interpretations of diagnostic medical images with new digital-format interpretations that can also be saved, and retrieve However, the big limitation in PACS is considered to be the lack of mobility. The purpose of this study is to determine the optimal communication packet size. This was done by considering the terms occurred in the wireless communication. After encoding medical image using JPGE2000 image compression method, This method embodied auto-error correction technique preventing the loss of packets occurred during wireless communication. A PC class server, with capabilities to load, collect data, save images, and connect with other network, was installed. Image data were compressed using JPEG2000 algorithm which supports the capability of high energy density and compression ratio, to communicate through a wireless network. Image data were also transmitted in block units coeded by JPEG2000 to prevent the loss of the packets in a wireless network. When JPGE2000 image data were decoded in a PUA (Personal Digital Assistant), it was instantaneous for a MR (Magnetic Resonance) head image of 256${\times}$256 pixels, while it took approximately 5 seconds to decode a CR (Computed Radiography) chest image of 800${\times}$790 pixels. In the transmission of the image data using a CDMA 1X module (Code-Division Multiple Access 1st Generation), 256 byte/sec was considered a stable transmission rate, but packets were lost in the intervals at the transmission rate of 1Kbyte/sec. However, even with a transmission rate above 1 Kbyte/sec, packets were not lost in wireless LAN. Current PACS are not compatible with wireless networks. because it does not have an interface between wired and wireless. Thus, the mobile JPEG2000 image viewing system was developed in order to complement mobility-a limitation in PACS. Moreover, the weak-connections of the wireless network was enhanced by re-transmitting image data within a limitations The results of this study are expected to play an interface role between the current wired-networks PACS and the mobile devices.
Repeatability and reproducibility in solid weight and effective porosity measurements have been discussed using 8 core samples with different diameters, lengths, rock types, and effective porosities. Further, the effect of temperature on the effective porosity measurement has been discussed as well. Effective porosity of each sample has been measured 7 times with vacuum saturation method with vacuum pressure of 1 torr and vacuum time of 80 minutes. Firstly, effective porosity of each sample is measured one by one, so that it can provide a reference value. Then for reproducibility check, effective porosity measurements with vacuum saturation of 2, 4, and 8 samples simultaneously have been performed. And finally, repeated measurements for 3 times for each sample are made for repeatability check. Average deviation from the reference set in solid weight showed 0.00 $g/cm^3$, which means perfect repeatability and reproducibility. For effective porosity, average deviations are less than 0.07% and 0.05% in repeatability and reproducibility test sets, respectively, which are in good agreement too. Most of porosities measured in reproducibility test lies within the deviation range in repeatability test sets. Thus, simultaneous vacuum saturation of several samples has little impact on the effective porosity measurement when high vacuum pressure of 1 torr is used. Air temperature can cause errors on submerged weight read and even effective porosity, because it is closely related to the temperature, density, and buoyancy of water. Consequently, for accurate measurement of effective porosity in a laboratory, efforts for maintaining air or water temperature constant during the experiment, or a temperature correction from other information are needed.
Purpose: To compare the dose distributions between three-dimensional (3D) and four-dimensional (4D) radiation treatment plans calculated by Ray-tracing or the Monte Carlo algorithm, and to highlight the difference of dose calculation between two algorithms for lung heterogeneity correction in lung cancers. Materials and Methods: Prospectively gated 4D CTs in seven patients were obtained with a Brilliance CT64-Channel scanner along with a respiratory bellows gating device. After 4D treatment planning with the Ray Tracing algorithm in Multiplan 3.5.1, a CyberKnife stereotactic radiotherapy planning system, 3D Ray Tracing, 3D and 4D Monte Carlo dose calculations were performed under the same beam conditions (same number, directions, monitor units of beams). The 3D plan was performed in a primary CT image setting corresponding to middle phase expiration (50%). Relative dose coverage, D95 of gross tumor volume and planning target volume, maximum doses of tumor, and the spinal cord were compared for each plan, taking into consideration the tumor location. Results: According to the Monte Carlo calculations, mean tumor volume coverage of the 4D plans was 4.4% higher than the 3D plans when tumors were located in the lower lobes of the lung, but were 4.6% lower when tumors were located in the upper lobes of the lung. Similarly, the D95 of 4D plans was 4.8% higher than 3D plans when tumors were located in the lower lobes of lung, but was 1.7% lower when tumors were located in the upper lobes of lung. This tendency was also observed at the maximum dose of the spinal cord. Lastly, a 30% reduction in the PTV volume coverage was observed for the Monte Carlo calculation compared with the Ray-tracing calculation. Conclusion: 3D and 4D robotic radiotherapy treatment plans for lung cancers were compared according to a dosimetric viewpoint for a tumor and the spinal cord. The difference of tumor dose distributions between 3D and 4D treatment plans was only significant when large tumor movement and deformation was suspected. Therefore, 4D treatment planning is only necessary for large tumor motion and deformation. However, a Monte Carlo calculation is always necessary, independent of tumor motion in the lung.
Kim Jeung-kee;Choi Young-Min;Lee Hyung-Sik;Hur Won-Joo
Radiation Oncology Journal
/
v.14
no.3
/
pp.237-244
/
1996
Purpose : The accurate dosimetry of independent collimator equipped for 6MV and 15MV X-ray beam was investigated to search for the optimal correction factor. Materials and Methods : The field size factors, beam quality and dose distribution were measured by using 6MV, 15MV X-ray Field size factors were measured from $3{\times}3cm^2$ to $35{\times}35cm^2$ by using 0.6cc ion chamber (NE 2571) at Dmax. Beam qualities were measured at different field sizes, off-axis distances and depths. Isodose distributions at different off-axis distance using $10\times10cm^2$ field were also investigated and compared with symmetric field. Result: 1) Relative field size factors was different along lateral distance with maximum changes in $3.1\%$ for 6MV and $5\%$ for 15MV. But the field size factors of asymmetric fields were identical to the modified central-axis values in symmetric field, which corrected by off-axis ratio at Dmax. 2) The HVL and PDD was decreased by increasing off-axis distance. PDD was also decreased by increasing depth For field size more than $5{\times}cm^2$ and depth less than 15cm, PDD of asymmetric field differs from that of symmetric one ($0.5\~2\%$ for 6MV and $0.4\~1.4\%$ for 15MV). 3) The measured isodose curves demonstrate divergence effects and reduced doses adjacent to the edge close to the flattening filter center was also observed. Conclusion . When asymmetric collimator is used, calculation of MU must be corrected with off-axis and PDD with a caution of underdose in central axis.
Purpose : Since the mid cranial fossa is composed of various thickness of bone, the tissue inhomogeneity caused by bone would produce dose attenuation in cobalt-60 gamma knife irradiation. The correction factor for bone attenuation of cobalt-60 which is used for gamma knife source is -3.5$\%$. More importantly, nearly all the radiosurgery treatment planning systems assume a treatment volume of unit density: any perturbation due to tissue inhomogeneity is neglected, This study was performed to confirm the bone attenuation in mid cranial fossa using gamma knife. Materials and Methods : Computed tomography was performed after Leksell stereotactic frame had been liked to the Alderson Rando Phantom (human phantom) skull area. Kodak X-omat V film was inserted into two sites of pituitary adenoma point and acoustic neurinoma point, and irradiated by gamma knife with 14mm and 18mm collimator. An automatic scanning densitometer with a 1mm aperture is used to measure the dose profile along the x and y axis. Results : Isodose curve constriction in mid cranial fossa is observed with various ranges. Pituitary tumor point is greater than acoustic neurinoma point (0.2-3.0 mm vs 0.1-1.3 mm) and generally 14 mm collimator is greater than 18mm collimator (0.4-3.0 mm vs. 0.2-2.2 mm) Even though the isodose constriction is found, constriction of 50$\%$ isodose curve which is used for treatment reference line does not exceed 1 mm. This range is too small to influence the treatment planning and treatment results. Conclusion : Radiosurgery planning system of gamma knife does not show significant error to be corrected without consideration of bone attenuation.
Background : Portable devices for measuring peak expiratory flow(PEF) are now of proved value in the diagnosis and management of asthma and many lightweight PEF meters have become available. However, it is necessary to determine whether peak expiratory flow rate(PEFR) measurements measured with peak flowmeters is accurate and reproducible for clinical application. The aim of the present study is to define accuracy, agreement, and precision of mini-Wright peak flow meter(MPFM) against standard pneumotachygraph. Methods : The lung function tests by standard pneumotachygraph and PEFR measurement by MPFM were performed in a random order for 2 hours in 22 normal and 17 asthmatic subjects and also were performed for 3 successive days in 22 normals. Results : The PEFR measured with MPFM was significantly related to the PEFR and $FEV_1$ measured with standard pneumotachygraph in normal and asthmatics(for PEFR, r = 0.92 ; p < 0.001 ; for $FEV_1$, r = 0.78 ; p < 0.001). The accuracy of MPFM was within 100(limits of accuracy recommeded by NAEP) in all the subjects or 22 normal, mean difference from standard pneumotachygraph being 16.5L/min(percentage of difference being 2.90%) or 10.6L/min(percentage of difference being 1.75%), respectively. According to the method proposed by Bland and Altman, the 95% limits of the distribution of differences between MPFM and standard pneumotachygraph after correction of PEFR using our regression equation were +38.2 and -71.5L/min in all the subjects or 20.49~+9.49L/min in 22 normal and was similar to the intraindividual agreements for 3 successive days in normal. There was no statistically significant difference of PEFR measured with MPFM and standard pneumotachygraph among three days(p > 0.05) and the coefficient of variation($2.4{\pm}1.2%$) of PEFR measured with MPFM was significantly lower than that($5.2{\pm}3.5%$) with standard pneumotachygraph in normal (p < 0.05). Conclusion : This results suggest that the MPFM was as accurate and reproducible as standard pneumotachygraph for monitoring of PEFR in the asthmatic subjects.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.