• Title/Summary/Keyword: Korean correction

Search Result 7,130, Processing Time 0.033 seconds

Calibration Technology for Precise Alignment of Large Flat Panel Displays (대형 평판 디스플레이의 정밀 정렬을 위한 캘리브레이션 기술)

  • Hong, Jun-Ho;Shin, Dongwon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.3
    • /
    • pp.100-109
    • /
    • 2022
  • In this study, calibration technology that increases the alignment accuracy in large flexible flat panels was studied. For precise of calibration, a systematization of the calibration algorithm was established, and a calibration correction technique was studied to revise calibration errors. A coordinate systems of camera and UVW stage was established to get the global position of the mark, and equations for translational and rotational calibration were systematically derived based on geometrical analysis. Correction process for the calibration data was carried, and alignment experiments were performed sequentially in cases of the presence or absence of calibration-correction. Alignment results of both calibration correction and non-calibration correction showed accuracy performance less than 1㎛. On the other hand, the standard deviation in calibration-correction is smaller than non-calibration correction. Therefore, calibration correction showed improvement of the alignment repeatability.

New In-Orbit Pixel Correction Method

  • Kim Youngsun;Kong Jong-Pil;Heo Haeng-Pal;Park Jong-Euk;Chang Young-Jun
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.604-607
    • /
    • 2005
  • All CCD pixels do not react uniformly even if the light of same radiance enters into the camera. This comes from the different camera optical characteristics, the read-out characteristics, the pixel own characteristics and so on. Usually, the image data of satellite camera can be corrected by the various image-processing methods in the ground. However, sometimes, the in-orbit correction is needed to get the higher quality image. Especially high frequency pixel correction in the middle of in-orbit mission is needed because the in-orbit data compression with the high frequency loss is essential to transmit many data in real time due to the limited RF bandwidth. In this case, this high frequency correction can prevent have to have any unnecessary high frequency loss. This in-orbit correction can be done by the specific correction table, which consists of the gain and the offset correction value for each pixel. So, it is very important to get more accurate correction table for good correction results. This paper shows the new algorithm to get accurate pixel correction table. This algorithm shall be verified theoretically and also verified with the various simulation and the test results.

  • PDF

New Speed Adjustment Factor for Analyzing Level of Service at Multi-Lane Highway (다차로도로의 서비스수준 분석을 위한 속도보정계수 개선에 관한 연구)

  • Kim, Wongil;Kang, Woneui;Noh, Chang-Gyun;Park, Bumjin
    • International Journal of Highway Engineering
    • /
    • v.14 no.6
    • /
    • pp.167-173
    • /
    • 2012
  • PURPOSES : This study is to develop speed correction factor for more realistic Level-of-Service(LOS) at multilane highway. METHODS : In this study, we compared speed difference the degree of speed reductions in actual multilane road conditions with speed reduction considering speed correction factor presented in highway capacity manual using statistical techniques. And also we presents new speed correction factor analyzing collected data at national highway No.1 (Goyang~Wolrung). RESULTS : The result of analyzing and comparing new suggested speed correction factor with speed correction factor in Korea Highway Capacity Manual (KHCM) shows RMSE (Root Mean Square Error) in new speed correction factor (RMSE 1.5) is much lower than existing speed correction factor (RMSE 13.4). New suggested speed correction can be used for analyzing Level-of-Service at multilane highway. And also we suggests improvements for analysis procedure in analyzing Level-of-Service at multilane highway CONCLUSIONS : As a result of comparing differences, we draw the causes that effect the differences in speed and suggest new speed correction factor that consider traffic volumes. It can be more rational because it uses speed correction factor which can consider more realistic traffic conditions, etc.

Establishment of Correction Equation for Filling Volumn according to Moisture Content (수분 함량별 부풀성 보정식 설정)

  • Chung Han-Joo;Kim Yong-Ok
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.27 no.1 s.53
    • /
    • pp.94-99
    • /
    • 2005
  • To correct the difference of filling volumn for various cut tobacco and puffed stem according to moisture contents, correction equation was estamated by a simple regression analysis. The $R^2$(coefficient of determination) of correction equation was above 0.95. To verify the precision of correction equation, we predicted correction equation of other samples. The filling volumns by the difference of $1\%$ moisture content were $0.018\;~\;0.022cc/g$ (cut tobacco) and 0.060cc/g (puffed stem). The precision of correction equation for various cut tobacco was very high, but that of puffed stem was low due to quality deviation of row stem according to a season.

Extending Ionospheric Correction Coverage Area by using Extrapolation Methods (외삽기법을 이용한 전리층 보정정보 영역 확장)

  • Kim, Jeongrae;Kim, Mingyu
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.22 no.3
    • /
    • pp.74-81
    • /
    • 2014
  • The coverage area of GNSS regional ionospheric correction model is mainly determined by the disribution of GNSS ground monitoring stations. Outside the coverage area, GNSS users may receive ionospheric correction signals but the correction does not contain valid correction information. Extrapolation of the correction information can extend the coverage area to some extent. Three interpolation methods, Kriging, biharmonic spline and cubic spline, are tested to evaluate the extrapolation accuracy of the ionospheric delay corrections outside the correction coverage area. IGS (International GNSS Service) ionosphere map data is used to simulate the corrections and to compute the extrapolation error statistics. Among the three methods, biharmonic method yields the best accuracy. The estimation error has a high value during Spring and Fall. The error has a high value in South and East sides and has a low value in North side.

Performance Improvement of Context-Sensitive Spelling Error Correction Techniques using Knowledge Graph Embedding of Korean WordNet (alias. KorLex) (한국어 어휘 의미망(alias. KorLex)의 지식 그래프 임베딩을 이용한 문맥의존 철자오류 교정 기법의 성능 향상)

  • Lee, Jung-Hun;Cho, Sanghyun;Kwon, Hyuk-Chul
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.3
    • /
    • pp.493-501
    • /
    • 2022
  • This paper is a study on context-sensitive spelling error correction and uses the Korean WordNet (KorLex)[1] that defines the relationship between words as a graph to improve the performance of the correction[2] based on the vector information of the word embedded in the correction technique. The Korean WordNet replaced WordNet[3] developed at Princeton University in the United States and was additionally constructed for Korean. In order to learn a semantic network in graph form or to use it for learned vector information, it is necessary to transform it into a vector form by embedding learning. For transformation, we list the nodes (limited number) in a line format like a sentence in a graph in the form of a network before the training input. One of the learning techniques that use this strategy is Deepwalk[4]. DeepWalk is used to learn graphs between words in the Korean WordNet. The graph embedding information is used in concatenation with the word vector information of the learned language model for correction, and the final correction word is determined by the cosine distance value between the vectors. In this paper, In order to test whether the information of graph embedding affects the improvement of the performance of context- sensitive spelling error correction, a confused word pair was constructed and tested from the perspective of Word Sense Disambiguation(WSD). In the experimental results, the average correction performance of all confused word pairs was improved by 2.24% compared to the baseline correction performance.

Comparison between Accommodative Response Change on the Full Vision Correction and Low Vision Correction (완전교정과 저교정 상태에서 조절반응 변화량의 비교)

  • Bae, Sung-Hyun;Kwak, Ho-Weon
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.17 no.1
    • /
    • pp.75-81
    • /
    • 2012
  • Purpose: The study tried to figure out accommodative changes by measuring accommodative response, appearing on the full vision correction and low vision correction, with both eyes open-view auto-refractometer (Nvision-K5001, Shin-nippon, Japan). Methods: It carried out objective and subjective refractions, targeting 79 college students (58 males and 21 females) aged between 20 and 30($21.14{\pm}2.00$), by measuring accommodative changes with fixation distance at 1.0 m for eyesight of 1.0 after full version correction. The distances of 5.0 m, 1.0 m, 0.50 m, 0.33 m and 0.25 m for eyesight of 0.8, 0.7 and 0.6 after low vision correction arbitrarily added plus lens were applied. Results: the shorter measure fixation distances were, the greater changes accommodative response showed a tendency in the state of both full vision correction and low vision correction(0.7). The state of full vision correction showed a greater change of accommodative response than that of low vision correction(0.7). Both right and left eyes showed low accommodative responses in the state of low vision correction(0.7) than that of full vision correction. As a result of analyzing accommodative response at an eyesight of 0.8, 0.7, and 0.6 after low vision correction, the poorer eyesight was the lower accommodative response. Conclusions: Low vision correction from a near distance is expected to avoid unnecessary accommodative response, make eyes relaxed and prevent accommodative function disorder.

Metal artifact SUV estimation by using attenuation correction image and non attenuation correction image in PET-CT (PET-CT에서 감쇠보정 영상과 비감쇠보정 영상을 통한 Metal Artifact 보정에 대한 고찰)

  • Kim, June;Kim, Jae-II;Lee, Hong-Jae;Kim, Jin-Eui
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.20 no.2
    • /
    • pp.21-26
    • /
    • 2016
  • Purpose Because of many advantages, PET-CT Scanners generally use CT Data for attenuation correction. By using CT based attenuation correction, we can get anatomical information, reduce scan time and make more accurate correction of attenuation. However in case metal artifact occurred during CT scan, CT-based attenuation correction can induce artifacts and quantitative errors that can affect the PET images. Therefore this study infers true SUV of metal artifact region from attenuation corrected image count -to- non attenuation corrected image count ratio. Materials and Methods Micro phantom inserted $^{18}F-FDG$ 4mCi was used for phantom test and Biograph mCT S(40) is used for medical test equipment. We generated metal artifact in micro phantom by using metal. Then we acquired both metal artifact region of correction factor and non metal artifact region of correction factor by using attenuation correction image count -to- non attenuation correction image count ratio. In case of clinical image, we reconstructed both attenuation corrected images and non attenuation corrected images of 10 normal patient($66{\pm}15age$) who examined PET-CT scan in SNUH. After that, we standardize several organs of correction factor by using attenuation corrected image count -to- non attenuation corrected count ratio. Then we figured out metal artifact region of correction factor by using metal artifact region of attenuation corrected image count -to- non attenuation corrected count ratio And we compared standard organs correction factor with metal artifact region correction factor. Results according to phantom test results, metal artifact induce overestimation of correction factor so metal artifact region of correction factors are 12% bigger than the non metal artifact region of correction factors. in case of clinical test, correction factor of organs with high CT number(>1000) is $8{\pm}0.5%$, correction factor of organs with CT number similar to soft tissue is $6{\pm}2%$ and correction factor of organs with low CT number(-100>) is $3{\pm}1%$. Also metal artifact correction factors are 20% bigger than soft tissue correction factors which didn't happened metal artifact. Conclusion metal artifact lead to overestimation of attenuation coefficient. because of that, SUV of metal artifact region is overestimated. Thus for more accurate quantitative evaluation, using attenuation correction image count -to-non attenuation correction image count ratio is one of the methods to reduce metal artifact affect.

  • PDF

The Effect of Postural Correction and Subsequent Balloon Inflation in Deformity Correction of Acute Osteoporotic Vertebral Fractures

  • Liu, Hai-Xiao;Xu, Cong;Shang, Ping;Shen, Yue;Xu, Hua-Zi
    • Journal of Korean Neurosurgical Society
    • /
    • v.55 no.6
    • /
    • pp.337-342
    • /
    • 2014
  • Objective : To determine deformity correction by postural correction and subsequent balloon inflation in acute vertebral compression fractures (OVCFs) and to examine the effect of bone mineral density on deformity correction. Methods : A totol of 50 acute OVCFs received balloon kyphoplasty. Lateral radiographs were taken and analyzed at five different time points : 1) preoperative, 2) after placing the patient in prone hyperextended position, 3) after balloon inflation, 4) after deposition of the cement, and 5) postoperative. All fractures were analyzed for height restoration of anterior (Ha), middle (Hm) and posterior (Hp) vertebra as well as Cobb angle and Kyphotic angle. The bone mineral density (BMD) of lumbar spine was measured by dual-energy X-ray absorptiometry. According to the T-score, the patients were divided into two groups which were osteoporosis group and osteopenia group. Results : Postoperative measurements of Ha, Hm and the Cobb angle demonstrated significant reduction of 4.62 mm, 3.66 mm and $5.34^{\circ}$ compared with the preoperative measurements, respectively (each p<0.05). Postural correction significantly increased Ha by 5.51 mm, Hm by 4.35 mm and improved the Cobb angle by $8.32^{\circ}$ (each p<0.05). Balloon inflation did not demonstrate a significant improvement of Ha, Hm or the Cobb angle compared with baseline prone hyperextended. Postural correction led to greater improvements of Ha, Hm and Cobb angle in osteoporosis group than osteopenia group (each p<0.05). Conclusion : In acute OVCFs, the height restoration was mainly attributed to postural correction rather than deformity correction by balloon inflation. BMD affected deformity correction in the process of postural correction.

Contrast and geometric correction of non-standardized radiographs in digital subtraction radiography (디지털 공제술에서 비표준화 방사선사진의 대조도 및 기하학적 보정에 관한 연구)

  • Kim, Eun-Kyung
    • Journal of Periodontal and Implant Science
    • /
    • v.28 no.4
    • /
    • pp.797-809
    • /
    • 1998
  • The purposes of this study were to develop the computer program for the contrast and geometric correction in digital subtration radiography with the IDL (Interactive Data Language) and compare the results with this program for the correction of the non-standardized radiographs to those of standardized radiographs and those with "Emago" software, the commercial program for the correction. The procedures were written for the contrast correction and subtraction with the geometric correction, using IDL. 32 pairs of periapical radiographs of premolar and molar portion of two dry human mandibles were taken at two different occasions with XCP film holder(nonstandardized films) and another 32 pairs with customized XCP film holder(standardized films). Subtraction of standardized film pairs was performed. Subtraction after the contrast and geometric correction of non-standardized films was performed using the newly developed program and Emago software. Standard deviations of grey levels of the subtracted images by the newly developed program were compared with those of the standardized group and Emago-corrected group. Standard deviations of grey levels of new program-corrected group were much smaller than those of the Emago-corrected group (p<0.001) and slightly larger than those of standardized group (p<0.05). However, the difference was very minute. This study indicates that the newly developed program written with IDL may substitute the mechanical standardization for digital subtraction radiography.

  • PDF