• Title/Summary/Keyword: Korean ash

Search Result 4,939, Processing Time 0.031 seconds

Physicochemical properties of dried Saururus chinensis and the antioxidative activities of water and 70% ethanol extracts (덖음온도를 달리하여 전저리한 삼백초 건조물의 이화학적 특성 및 물과 70% 에탄올 추출물의 항산화효과)

  • Kang, Myung-Hwa;An, Su-Mi;Kim, Do-Hee
    • Journal of Nutrition and Health
    • /
    • v.52 no.4
    • /
    • pp.399-407
    • /
    • 2019
  • Purpose: This study was conducted to evaluate the physicochemical properties of different batches of Saururus chinensis using different roasting temperature that were dried at different using different roasting temperatures and their were determined the antioxidative activities of water and 70% ethanol extracts. Methods: Extracts were examined for the total phenolic acid content, the and flavonoids contents and the antioxidant properties, including DPPH radical scavenging activity, ABTs scavenging activity and, the reducing power. Results: Moisture content was significantly higher in the LSC and the crude ash content was significantly higher in the HSC. The crude protein content was higher in the LSC (although not significantly), and the crude fat and carbohydrate contents were higher in the HSC (although not significantly). The total phenolic content was lower in the samples extracted with water, but there was no significant difference. However, the extracts extracted with 70% ethanol at a high drying temperature were significantly higher. The low temperature and high drying temperature batches of Saururus chinensis were significantly higher in the samples extracted with 70% ethanol than those extracted with 70% ethanol. The total phenolic acid content, the total flavonoid content and the electron donating ability were highest in the ethanol extract of Saururuschinensis treated at a high temperature. However, the ABTs radical activity was highest in the water extracted, high-temperature treated Saururuschinensis. The 70% ethanol extract of high temperature roasted Saururuschinensis had the highest antioxidative activities of all the Saururuschinensis batches. Conclusion: The total phenolic acid contents, total flavonoid contents, electron donating activity and reducing power activity were highest in all the 70% ethanol extraction batches of the high-temperature treated samples.

Assessment of Nutritional Components, Antioxidant Contents and Physiological Activity of Purple Corn Husk and Cob Extracts (자색옥수수 포엽과 속대 혼합 추출물의 영양성분, 항산화 활성 물질 함량분석 및 생리활성 평가)

  • Lee, Ki Yeon;Kim, Tae hee;Kim, Jai Eun;Park, A-Reum;Noh, Hee Sun;Kim, Si Chang;Ahn, Mun Seob;Kim, Hee Yeon
    • Journal of Food Hygiene and Safety
    • /
    • v.33 no.6
    • /
    • pp.500-509
    • /
    • 2018
  • The objective of this study was to investigate the worth of extract husk and cobs of the Seakso 1 (EHCS) for the functional foods. We aimed to investigate the proximate composition, fatty acids, amino acids, antioxidant active substance contents, antioxidant activity, inhibitory activity of the ${\alpha}-amylase$ and ${\alpha}-glucosidase$. The proximate composition of the EHCS have represented 6.90% moisture, 7.31% crude ash, 0.52% crude fat and 7.07% crude protein. Among the 17 kinds of amino acids that were analyzed in thd EHCS, the glutamic acid was the highest, with 736.08 mg / 100 g. The fatty acids detected in the EHCS were palmitic acid oleic acid and linoleic acid. The proportion of the unsaturated fatty acids was 83.33%. We determined the contents of the antioxidant active substance by the total polyphenol and flavonoid. The total polyphenol and flavonoid contents were 99.87 mg/g and 25.02 mg/g, respectively. The antioxidative activity of the EHCS were determined using a DPPH and ABTS assay. In the antioxidative activity determination, the DPPH and ABTS radical scavenging activities were 95.62% ($1,000{\mu}g/mL$) and 92.00% ($10,000{\mu}g/mL$), respectively. The inhibitory activity of ${\alpha}-amylase$ and ${\alpha}-glucosidase$ (10 mg/mL) were 95.86% and 76.92%, respectively. These results suggest that the EHCS could be potentially used as a resource for the bioactive materials for health functional foods.

Physico-chemical, Nutritional, and Enzymatic Characteristics of Shiitake Spent Mushroom Substrate (SMS) (표고버섯 수확 후 배지의 이화학적, 영양적, 효소적 특성)

  • Sung, Hwa-Jung;Pyo, Su-Jin;Kim, Jong-Sik;Park, Jong-Yi;Sohn, Ho-Yong
    • Journal of Life Science
    • /
    • v.28 no.11
    • /
    • pp.1339-1346
    • /
    • 2018
  • In Korea, edible mushrooms are produced largely on commercial artificial media, so the annual production of spent mushroom substrate (SMS), as a by-product of the mushroom industry, is estimated at over 200 million tons. This SMS is assumed to contain abundant fungal mycelia and pre-fruiting bodies, as well as various nutritive and bioactive compounds that are presently discarded. This study examined the physico-chemical, nutritional, and enzymatic characteristics of uninoculated sterilized medium (USM) and SMS of shiitake mushrooms with the aim of developing a high-value added product from SMS. The contents of crude protein, crude lipid, and ash were higher after the third SMS harvest ($SMS-A-3^{rd}$) than in USM or $SMS-A-1^{st}$. The contents of Ca, Mg, and P in $SMS-A-3^{rd}$ were 2.95, 2.35, and 2.1-fold higher compared than in USM. No As or Cd was detected in USM or SMS. The pH, Brix, and acidity were 4.6, 20.0, and 1.4, respectively in $SMS-A-3^{rd}$, but 5.6, 6.0, and 0.0, respectively, in USM. These results suggest a highly active production of soluble components and organic acids in $SMS-A-3^{rd}$. The distinct color differences noted for USM, $SMS-A-1^{st}$, and $SMS-A-3^{rd}$ could be used as a mycelial growth indicator. Enzyme activity assays using the APIZYM system showed that SMS is a potent source of hydrolysis-related enzymes, especially esterase (C4) and ${\beta}$-glucuronidase. Our results suggested that the SMS of shiitake has a high potential for use in environmental, agricultural, and stock-breeding industries, for example, as active ingredients for sewage treatment, waste-polymer degradation, and feed additives.

Estimation of Characteristics and Methane Production Rate of Food Waste (음식물류 폐기물 특성 및 메탄 발생가능량 평가)

  • Lee, Min-Kyu;Kim, Kyung;Shin, Hyun-Gon;Bae, Ki-Hwan;Kim, Choong-Gon;Park, Joon-Seok
    • Clean Technology
    • /
    • v.25 no.3
    • /
    • pp.223-230
    • /
    • 2019
  • This research was performed to evaluate the characteristics of food waste from 5 areas in Gangwon Province, Korea and to predict the $CH_4$ gas production rate. Food wastes were sampled in July and September, 2017. The amount of methane gas generation was evaluated through the biochemical methane potential (BMP) test and a calculation method using chemical composition. Average bulk density and pH of the food wastes were in the range of $0.758{\sim}0.850g\;cm^{-3}$ and 4.29 ~ 4.75, respectively. By physical composition, vegetables were the highest with 56.43 ~ 72.81% with fruits recording 5.31 ~ 8.95%, cereals 1.60 ~ 18.73%, fish and meat 4.47 ~ 12.11%, and filtrate 1.76 ~ 3.64%. The average water content was 69.30 ~ 75.87%, and VS and ash content were 22.50 ~ 27.98% and 1.63 ~ 2.48%, respectively. In addition, $BOD_5$, $COD_{Cr}$, and $COD_{Mn}$ were in the ranges of $17,690.3{\sim}33,154.9mg\;L^{-1}$, $106,212.3{\sim}128,695.5mg\;L^{-1}$, and $51,266.1{\sim}63,426.3mg\;L^{-1}$, respectively. The NaCl content ranged from 0.81 to 1.17%. The results of elemental analysis showed that the contents of C, H, O, N, and S were 44.87 ~ 48.1%, 7.12 ~ 7.57%, 40.13 ~ 43.78%, 3.22 ~ 4.14%, and 0.00 ~ 0.02%, respectively. In a comparison of the methane production yield per VS mass of food waste, there was no significant difference between the cumulative amount (${0.303{\sim}0.354m_{CH4}}^3\;{kg_{VS}}^{-1}$) by the BMP test and the theoretical amount (${0.294{\sim}0.352m_{CH4}}^3\;{kg_{VS}}^{-1}$) calculated by chemical composition.

Study of Nutrient Analysis by Specie of Domestically Cultivated Popcorns (국내 육성 팝콘 옥수수 품종별 영양성분 분석 연구)

  • Park, A Reum;Lee, Ki Yeon;Kim, Tae Hee;Choi, Jae Geun;Lee, Hyo Young;Choi, Sung Jin;Kwon, Sun Bae;Kim, Hee Yeon
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.5
    • /
    • pp.438-446
    • /
    • 2019
  • In this study, the nutrients of a total of 4 species of popcorn, Oryun Popcorn, Oryun Popcorn 2, G-Popcorn and Gichan Popcorn, cultivated in Gangwon-do, were analyzed and compared. The contents of these products, including their general ingredients, inorganic substances, fatty acids, reducing sugar and starch, were analyzed. The moisture, crude ash and crude fat content of the dried popcorn species were 11.54-12.54%, 0.97-1.45% and 2.48-2.62%, respectively. The crude protein content was 9.68-11.75%. As for inorganic substances, the potassium and phosphorus content were the highest. Potassium was 228.25-310.46 mg/100g and was the highest in Oryun Popcorn, and the content of phosphorus was 276.04-310.00 mg/100g. As for fatty acids, 11 types were detected. The content of linoleic acid accounted for 52.89-55.76% of the total fatty acid content showing the highest amount followed by oleic acid (24.31-26.65%) and palmitic acid (14.20-15.92%). As for amino acids, total 16 types of amino acids were detected by specie, with glutamic acid making up 17.70-18.52% of total amino acids, the highest, followed by leucine (12.30-12.54%) and proline (10.34-10.92%) in that order. The creducing sugar content by specie was 4.68-5.13% and starch content was 42.14-46.14%.

Effect of Dry Surface Treatment with Ozone and Ammonia on Physico-chemical Characteristics of Dried Low Rank Coal (건조된 저등급 석탄에 대한 건식 표면처리가 물리화학적 특성에 미치는 영향)

  • Choi, Changsik;Han, Gi Bo;Jang, Jung Hee;Park, Jaehyeon;Bae, Dal Hee;Shun, Dowon
    • Applied Chemistry for Engineering
    • /
    • v.22 no.5
    • /
    • pp.532-539
    • /
    • 2011
  • The physical and chemical properties of the dried low rank coals (LRCs) before and after the surface treatment using ozone and ammonia were characterized in this study. The contents of moisture, volatiles, fixed carbon and ash consisting of dried LRCs before the surface treatment were about 2.0, 44.8, 44.9 and 8.9%, respectively. Also, it was composed of carbon of 62.66%, hydrogen of 4.33%, nitrogen of 0.94%, oxygen of 27.01% and sulfur of 0.09%. The dried LRCs was surface-treated with the various dry methods using gases such as ozone at room temperature, ammonia at $200^{\circ}C$ and then the dried LRCs before and after the surface treatment were characterized by the various analysis methods such as FT-IR, TGA, proximate and elemental analysis, caloric value, ignition test, adsorption of $H_2O$ and $NH_3-TPD$. As a result, the oxygen content increased and the calorific value, ignition temperature and the contents of carbon and hydrogen relatively decreased because the oxygen-contained functional groups were additionally generated by the surface oxidation with ozone which plays a role as an oxidant. Also, its $H_2O$ adsorption ability got higher because the hydrophilic oxygen-contained functional groups were additionally generated by the surface oxidation with ozone. On the other hand, it was confirmed that the dried LRCs after the surface treatment with $NH_3$ at $200^{\circ}C$ have the decreased oxygen content, but the increased calorific value, ignition temperature and contents of carbon and hydrogen because of the decomposition of oxygen-contained functional groups the on the surface. In addition, the $H_2O$ adsorption ability was lowered bucause the surface of the dried LRCs might be hydrophobicized by the loss of the hydrophilic oxygen-contained functional groups. It was concluded that the various physico-chemical properties of the dried LRCs can be changed by the surface treatment.

Experimental Study on the Agglomeration Characteristics of Coal and Silica Sand by addition of KOH (KOH 첨가에 의한 석탄 및 유동사의 응집특성에 대한 실험적 연구)

  • Cho, Cheonhyeon;Gil, Eunji;Lee, Uendo;Lee, Yongwoon;Kim, Seongil;Yang, Won;Moon, Jihwan;Ahn, Seokgi;Jung, Sungmook;Jeong, Soohwa
    • Clean Technology
    • /
    • v.28 no.1
    • /
    • pp.46-53
    • /
    • 2022
  • The agglomeration characteristics of coal and silica sand were investigated under various conditions using mixed samples consisting of coal, silica sand, and potassium hydroxide, which is an agglomeration accelerator. The samples were prepared by either physically mixing or using aqueous solutions. The experiments using the physically mixed powder samples were performed with a two hour reaction time. The results showed that the number of aggregates generated increased as the reaction temperature and the total potassium content increased. The experiments using aqueous solutions were performed at 880 ℃, which is the operating temperature of a fluidized bed boiler, and at 980 ℃, which assumes a local hot spot. The amount of agglomeration generated as the reaction time increased and the total potassium content increased was identified. In the experiment performed at 880 ℃, the amount of aggregate generated clearly increased with the reaction time, and in the experiment performed at 980 ℃, assuming a local hot spot, a large amount of aggregate was generated in a relatively short time. The aggregates became harder as the potassium content increased. When the total potassium content was less than 1.37 wt.%, the aggregates were weak at both temperatures and collapsed even with a slight impact. Additionally, the surface characteristics of the silica sand and ash aggregates were observed by SEM-EDS analysis. The analysis revealed a large amount of potassium at the bonding sites. This result indicates that there is a high possibility of aggregation in the form of a eutectic compound when the alkali component is increased.

A Review on the Recycling of the Concrete Waste Generate from the Decommissioning of Nuclear Power Plants (원전 해체 콘크리트 폐기물의 재활용에 대한 고찰)

  • Jeon, Ji-Hun;Lee, Woo-Chun;Lee, Sang-Woo;Kim, Soon-Oh
    • Economic and Environmental Geology
    • /
    • v.54 no.2
    • /
    • pp.285-297
    • /
    • 2021
  • Globally, nuclear-decommissioning facilities have been increased in number, and thereby hundreds of thousands of wastes, such as concrete, soil, and metal, have been generated. For this reason, there have been numerous efforts and researches on the development of technology for volume reduction and recycling of solid radioactive wastes, and this study reviewed and examined thoroughly such previous studies. The waste concrete powder is rehydrated by other processes such as grinding and sintering, and the processes rendered aluminate (C3A), C4AF, C3S, and ��-C2S, which are the significant compounds controlling the hydration reaction of concrete and the compressive strength of the solidified matrix. The review of the previous studies confirmed that waste concretes could be used as recycling cement, but there remain problems with the decreasing strength of solidified matrix due to mingling with aggregates. There have been further efforts to improve the performance of recycling concrete via mixing with reactive agents using industrial by-products, such as blast furnace slag and fly ash. As a result, the compressive strength of the solidified matrix was proved to be enhanced. On the contrary, there have been few kinds of researches on manufacturing recycled concretes using soil wastes. Illite and zeolite in soil waste show the high adsorption capacity on radioactive nuclides, and they can be recycled as solidification agents. If the soil wastes are recycled as much as possible, the volume of wastes generated from the decommissioning of nuclear power plants (NPPs) is not only significantly reduced, but collateral benefits also are received because radioactive wastes are safely disposed of by solidification agents made from such soil wastes. Thus, it is required to study the production of non-sintered cement using clay minerals in soil wastes. This paper reviewed related domestic and foreign researches to consider the sustainable recycling of concrete waste from NPPs as recycling cement and utilizing clay minerals in soil waste to produce unsintered cement.

The in vitro antioxidant, α-amylase and α-glucosidase inhibitory ability of different parts of passion fruit (Passiflora edulis) extract (패션프루트 부위별 추출물의 in vitro 항산화와 α-amylase 및 α-glucosidase 저해 활성)

  • Joo Young Jeon;Myung Hyun Kim;Young Sil Han
    • Journal of Applied Biological Chemistry
    • /
    • v.65 no.4
    • /
    • pp.261-267
    • /
    • 2022
  • The purpose of this study is to investigate the various functionalities of the peels, pulps, and seeds of passion fruit. Proximate composition, mineral contents, phenolic acid contents, total polyphenols, total flavonoids, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activities, 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging activities, reducing power, α-glucosidase, and α-amylase inhibitory activities were measured for each part of passion fruit. Proximate composition analysis of the passion fruit indicated that moisture content contained (4.78-8.20%), carbohydrate (68.33-73.23%), protein (8.78-13.63%), fat (1.19-11.60%), and ash (1.51-8.80%). K, Ca, Na and Fe were the predominant mineral in the peels. P and Mg were the predominant mineral in the pulps. All the antioxidant activities (total polyphenols, total flavonoids, DPPH radical scavenging, ABTS radical scavenging, and reducing power) showed high results in the seeds. α-Glucosidase and α-amylase inhibitory activities IC50 were in the peels (5.59 and 63.16 mg/mL), in the pulps (3.80 and 31.90 mg/mL), and in the seeds (0.06 and 1.02 mg/mL). These results indicated that the pulps, peels, and seeds of passion fruit have value as natural antioxidants with the high quality functional components.

Analysis of Predicted Reduction Characteristics of Ash Deposition Using Kaolin as a Additive During Pulverized Biomass Combustion and Co-firing with Coal (미분탄 연소 시스템에 바이오매스 혼소시 카올린 첨가제 적용에 따른 회 점착 저감 특성 예측 연구)

  • Jiseon Park;Jaewook Lee;Yongwoon Lee;Youngjae Lee;Won Yang;Taeyoung Chae;Jaekwan Kim
    • Clean Technology
    • /
    • v.29 no.3
    • /
    • pp.193-199
    • /
    • 2023
  • Biomass has been used to secure renewable energy certificates (REC) in domestic and overseas coal-fired power plants. In recent years, biofuel has been diversified from traditional wood pellets to non-woody biomass. Non-woody biomass has a higher content of alkaline metals such as K and Na than wood-based biomass, resulting in a lower melting point and an increase in slagging on boiler tubes, which reduces boiler efficiency. This study analyzed the effect of kaolin, an additive commonly used to increase melting points, on biomass co-firing to coal through thermochemical equilibrium calculations. In a previous experiment on biomass co-firing to coal conducted at 80 kWth, it was interpreted that the use of kaolin actually increased the amount of fouling. In this study, analysis showed that when kaolin was added, aluminosilicate compounds were generated due to Al2O3, which is abundant in coal, and mullite was formed. Thus, it was confirmed that the amount of slag increased when more kaolin was used. Further analysis was conducted by increasing the biomass co-firing rate from 0% to 100% at 10% intervals, and the results showed non-linear liquid slag generation. As a result, it was found that the least amount of liquid slag was generated when the biomass co-firing rate was between 50 and 60%. The phase diagram analysis showed that high melting point compounds such as leucite and feldspar were most abundantly generated under these conditions.