The text categorization is an important field for the automatic text information processing. Moreover, the authorship identification of a text can be treated as a special text categorization. This paper adopts the conceptual primitives' expression based on the Hierarchical Network of Concepts (HNC) theory, which can describe the words meaning in hierarchical symbols, in order to avoid the sparse data shortcoming that is aroused by the natural language surface features in text categorization. The KNN algorithm is used as computing classification element. Then, the experiment has been done on the Chinese text authorship identification. The experiment result gives out that the processing mode that is put forward in this paper achieves high correct rate, so it is feasible for the text authorship identification.
텍스트 데이터는 일반적으로 많은 다양한 단어들로 구성되어 있다. 평범한 텍스트 데이터의 경우에도 수만 개의 서로 다른 단어들을 포함하고 있는 경우를 흔히 관찰할 수 있으며 방대한 양의 텍스트 데이터에서는 수십만 개에 이르는 고유한 단어들이 포함되어 있는 경우도 있다. 텍스트 데이터를 전처리하여 문서-단어 행렬을 만드는 경우 고유한 단어를 하나의 변수로 간주하게 되는데 이렇게 많은 단어들을 각각 하나의 변수로 간주한다면 텍스트 데이터는 매우 많은 변수를 가진 데이터로 볼 수 있다. 한편, 텍스트 데이터의 분류 문제에서는 분류의 목표변수가 되는 범주의 비중에 큰 차이가 나는 불균형 데이터 문제를 자주 접하게 된다. 이렇게 범주의 비중에 큰 차이가 있는 불균형 데이터의 경우에는 일반적인 분류모형의 성능이 크게 저하될 수 있다는 사실이 잘 알려져 있다. 따라서 불균형 데이터에서의 분류 성능을 개선하기 위해 소수집단의 관측값들을 합성하여 소수집단에 포함되는 새로운 관측값을 생성하는 합성과표집기법(synthetic over-sampling technique; SMOTE) 등의 알고리즘을 적용할 수 있다. SMOTE는 k-최근접이웃(k-nearset neighbor; kNN) 알고리즘을 이용하여 새로운 합성 데이터를 생성하는데 텍스트 데이터와 같이 많은 변수를 가진 데이터의 경우에는 오차가 누적되어 kNN의 성능에 문제가 생길 수 있다. 이 논문에서는 변수선택을 통해 변수가 많은 불균형 텍스트 데이터를 오차가 축소된 공간에 표현하고 이 공간에서 새로운 합성 관측값을 생성하여 불균형 텍스트 데이터에서 소수 범주에 대한 SVM 분류모형의 예측 성능을 향상시키는 방법을 제안한다.
이 논문의 목적은 SVM(지지벡터기계) 분류기의 성능을 문헌간 유사도를 이용해서 향상시키는 것이다. SVM은 효과적인 기계학습 시스템으로서 최고 수준의 문헌자동분류 기술로 인정받고 있다. 이 연구에서는 문헌 벡터 자질 표현에 기반한 SVM 문헌자동분류를 제안하였다. 제안한 방식은 분류 자질로 색인어 대신 문헌 벡터를, 자질 값으로 가중치 대신 벡터유사도를 사용한다. 제안한 방식에 대한 실험 결과, SVM 분류기의 성능을 향상시킬 수 있었다. 실행 효율 향상을 위해서 문헌 벡터 자질 선정 방안과 범주 센트로이드 벡터를 사용하는 방안을 제안하였다. 실험 결과 소규모의 벡터 자질 집합만으로도 색인어 자질을 사용하는 기존 방식보다 나은 성능을 얻을 수 있었다.
텍스트 범주화에 있어서 일반적인 문제는 문헌을 표현하는 핵심적인 용어라도 학습문헌 집합에 나타나지 않으면 이 용어는 분류자질로 선정되지 않는다는 것과 형태가 다른 동의어들은 서로 다른 자질로 사용된다는 점이다. 이 연구에서는 위키피디아를 활용하여 문헌에 나타나는 동의어들을 하나의 분류자질로 변환하고, 학습문헌 집합에 출현하지 않은 입력문헌의 용어를 가장 유사한 학습문헌의 용어로 대체함으로써 범주화 성능을 향상시키고자 하였다. 분류자질 선정 실험에서는 (1) 비학습용어 추출 시 범주 정보의 사용여부, (2) 용어의 유사도 측정 방법(위키피디아 문서의 제목과 본문, 카테고리 정보, 링크 정보), (3) 유사도 척도(단순 공기빈도, 정규화된 공기빈도) 등 세 가지 조건을 결합하여 실험을 수행하였다. 비학습용어를 유사도 임계치 이상의 최고 유사도를 갖는 학습용어로 대체하여 kNN 분류기로 분류할 경우 모든 조건 결합에서 범주화 성능이 0.35%~1.85% 향상되었다. 실험 결과 범주화 성능이 크게 향상되지는 못하였지만 위키피디아를 활용하여 분류자질을 선정하는 방법이 효과적인 것으로 확인되었다.
In this paper, we propose a dynamic document classification method which breaks away from existing document classification method with artificial categorization rules focusing on suppliers and has changing categorization rules according to users' needs or social trends. The core of this dynamic document classification method lies in the fact that it creates classification criteria real-time by using topic modeling techniques without standardized category rules, which does not force users to use unnecessary frames. In addition, it can also search the details through the relevance analysis by calculating the relationship between the words that is difficult to grasp by word frequency alone. Rather than for logical and systematic documents, this method proposed can be used more effectively for situation analysis and retrieving information of unstructured data which do not fit the category of existing classification such as VOC (Voice Of Customer), SNS and customer reviews of Internet shopping malls and it can react to users' needs flexibly. In addition, it has no process of selecting the classification rules by the suppliers and in case there is a misclassification, it requires no manual work, which reduces unnecessary workload.
Recently, as the size of genetic knowledge grows faster, automated analysis and systemization into high-throughput database has become hot issue. One essential task is to recognize and identify genomic entities and discover their relations. However, ambiguity of name entities is a serious problem because of their multiplicity of meanings and types. So far, many effective techniques have been proposed to analyze documents. Yet, accuracy is high when the data fits the model well. The purpose of this paper is to design and implement a document classification system for identifying entity problems using text/data mining combination, supplemented by rich data mining algorithms to enhance its performance. we propose RTP ost system of different style from any traditional method, which takes fault tolerant system approach and data mining strategy. This feedback cycle can enhance the performance of the text mining in terms of accuracy. We experimented our system for classifying RB-related documents on PubMed abstracts to verify the feasibility.
This letter presents a prediction model for sentence-final intonations for Korean conversational-style text-to-speech systems in which we introduce the linguistic feature of 'modality' as a new parameter. Based on their function and meaning, we classify tonal forms in speech data into tone types meaningful for speech synthesis and use the result of this classification to build our prediction model using a tree structured classification algorithm. In order to show that modality is more effective for the prediction model than features such as sentence type or speech act, an experiment is performed on a test set of 970 utterances with a training set of 3,883 utterances. The results show that modality makes a higher contribution to the determination of sentence-final intonation than sentence type or speech act, and that prediction accuracy improves up to 25% when the feature of modality is introduced.
KSII Transactions on Internet and Information Systems (TIIS)
/
제12권8호
/
pp.4090-4102
/
2018
After emerging online communications, text mining and sentiment analysis has been frequently applied into analyzing electronic word-of-mouth. This study aims to develop a domain-specific lexicon of sentiment analysis to predict box office success in Korea film market and validate the feasibility of the lexicon. Natural language processing, a machine learning algorithm, and a lexicon-based sentiment classification method are employed. To create a movie domain sentiment lexicon, 233,631 reviews of 147 movies with popularity ratings is collected by a XML crawling package in R program. We accomplished 81.69% accuracy in sentiment classification by the Korean sentiment dictionary including 706 negative words and 617 positive words. The result showed a stronger positive relationship with box office success and consumers' sentiment as well as a significant positive effect in the linear regression for the predicting model. In addition, it reveals emotion in the user-generated content can be a more accurate clue to predict business success.
2014년 서울시는 시민의 목소리에 신속한 응대를 목표로 '서울특별시 응답소' 서비스를 시작하였다. 접수된 민원은 내용을 바탕으로 카테고리 확인 및 담당부서로 분류 되는데, 이 부분을 자동화시킬 수 있다면 시간 및 인력 비용이 감소될 것이다. 본 연구는 2010년 6월 1일부터 2017년 5월 31일까지 7년치 민원 사례 17,700건의 데이터를 수집하여, 최근 화두가 되고 있는 XGBoost 모델을 기존 RandomForest 모델과 비교하여 한국어 텍스트 분류의 적합성을 확인하였다. 그 결과 RandomForest에 대비 XGBoost의 정확도가 전반적으로 높게 나타났다. 동일한 표본을 활용하여 업 샘플링과 다운 샘플링 시행 후에는 RandomForest의 정확도가 불안정하게 나타난 반면, XGBoost는 전반적으로 안정적인 정확도를 보였다.
도서색인은 일종의 위치탐색 장치체계로서, 일반적으로 텍스트에 나오는 용어의 집합과 텍스트 속에서 그 용어가 출현하는 위치를 연결해 주는 역할만 한다. 반면에 DDC 상관색인의 용어는 페이지 수를 지시하기 보다는 분류번호나 혹은 본표에서 발견될 수 있는 이에 상응하는 범주어들을 가리킨다. DDC 색인은 DDC의 탄생 이상으로 그 중요성이 높다. 그래서 연구의 목적은 DDC 색인을 연구하는데 두었다. 상관색인은 본표나 보조표와는 정반대로 '표목 + 관점 + 분류기호'로 구성되어 있다. DDC에서 최초로 응용한 상관색인의 특성을 분석하여 그 기능을 종합하였으며, 또한 DDC 상관색인의 구조적 특성을 분석하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.