• Title/Summary/Keyword: Korean Stress Model

Search Result 5,596, Processing Time 0.034 seconds

FINITE ELEMENT ANALYSIS OF STRESS TRANSMITTED TO THE PULPOTOMIZED PRIMARY MOLARS TREATED BY VARIOUS TEMPORARY FILLING LOADED AT DIFFERENT CONDITION (하악 제2유구치 치수 절단술시 치아 및 충전재에 미치는 응력에 관한 유한 요소법적 분석)

  • Kim, Dong-Su;Kim, Jong-Soo;Kim, Yong-Kee
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.23 no.4
    • /
    • pp.818-839
    • /
    • 1996
  • The strain gage, holographic and photoelastic analysis etc. have been used for stress analysis of prosthesis, orthodontic or orthopedic appliances and filling materials. But these methods has some limitation in analyzing the internal stress. The Finite Element Analysis has been proved to compensate this defect and widely used in this area. The purpose of this study was to compare the stress distributions of the various temporary filling methods being used in pulpotomy procedure. Three different models were designed according to temporary filling material and method: amalgam filling with ZOE base(Model I), amalgam filling with ZPC sub-base and ZOE(Model II), IRM filling only(Model III). The results of the experiment were as follows: 1. In model I under the load case 6 and 1, the significant stress was shown to be concentrated on the buccal portion of crown. 2. Model II showed the similar pattern of stress distribution to Model I. 3. In model III under load case 2, the stress was mainly distributed on the buccal cusp tip and buccal margin of filling material. In same model under the load case 3, the stress was distributed on the lingual cusp tip. 4. Based on the above data, IRM can be assumed to have advantage over the other tested materials in reducing the incidence of crown fracture by localized the stress within the filling materials.

  • PDF

Structural Equation Model for Job Stress in Intensive Care Unit Nurses (중환자실 간호사의 직무 스트레스 관련 변인들 간의 구조모형 분석)

  • Jin, Su Jin;Lee, Ji Hyun
    • Korean Journal of Occupational Health Nursing
    • /
    • v.24 no.2
    • /
    • pp.103-113
    • /
    • 2015
  • Purpose: This study was to construct a structural equational model for explaining and predicting job stress of intensive care unit (ICU) nurses based on the Integrated model of stress of Ivancevich and Matteson (1980). Methods: The subjects of this study were 220 nurses at ICU. The data were collected from August 5 to 30, 2013 through self-reporting questionnaire survey. Results: According to the hypothetical model of this study, perceived nursing practice environment, perceived role conflict, perceived transformational leadership and perceived self-esteem showed statistically significant effects on job stress of ICU nurses directly. Professional self-concept indirectly affect job stress of ICU nurses. In conclusion, job stress of ICU nurses was directly influenced by nursing practice environment, role conflict, transformational leadership and self-esteem. Professional self-concept of the relationships among variables did not have a direct impact on job stress. Conclusion: Based on the results of this study, it is needed to develop stress management measures and programs considering these variables in order to adequately manage job stress of ICU nurses.

A Study on the Development of Stress Optic Law Considering Residual Stress in Photoelastic Experiment(II) -Application of Stress Optic Law Considering of Residual Sterss- (잔류응력을 고려한 광탄성실험의 광응력법칙 개발에 관한 연구 (2) -잔류응력을 고려한 광응력법칙의 응용-)

  • 서재국;황재석;최선호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.8
    • /
    • pp.1810-1821
    • /
    • 1995
  • Photoelastic experiment has been used to analyze stress of structure and stress in the vicinity of crack tip etc.. Model experiment such as photoelastic experiment has been restricted by problem of residual stress in the photoelastic model material. They are generated by molding, cutting and time effects etc.. They produce some errors in the results of photoelastic experiment data. In this paper, stress optic law considering residual stress already developed by authors was applied to the stress concentration problem and fracture mechanics. Although the specimen was bad with residual stress, we could obtain good results by using the stress optic law considering residual stress. It was found that the stress optic law of photoelastic experiment could be applied to the stress analysis of bimaterial.

Weibull Step-Stress Type-I Model Predict the Lifetime of Device (소자의 수명 예측을 위한 Weibull Step-Stress Type-I Model)

  • 정재성;오영환
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.6
    • /
    • pp.67-74
    • /
    • 1995
  • This paper proposes the step-stress type-I censoring model for analyzing the data of accelerated life test and reducing the time of accelerated life test. In order to obtain the data of accelerated life test, the step-stress accelerated life test was run with voltage stress to CMOS Hex Buffer. The Weibull distribution, the Inverse-power-law model and Maximum likelihood method were used. The iterative procedure using modified-quasi-linearization method is applied to solve the nonlinear equation. The proposed Weibull step-stress type-I censoring model exactly estimases the life time of units, while reducting the time of accelerated life test and the equipments of test.

  • PDF

Analysis of fatigue crack growth using fictitious crack model (가상균열 모델을 이용한 피로균열 진전 해석)

  • Yang Seung-Yong;Goo Byeong-choon
    • Proceedings of the KSR Conference
    • /
    • 2003.10c
    • /
    • pp.79-84
    • /
    • 2003
  • A fictitious crack model was used to analyze fatigue crack growth under the influence of residual stress. In the fictitious crack model, crack is represented in terms of the separation of two adjacent interfaces and the constitutive equation between the separation and traction is assumed. The effect of fatigue loading was included in the constitutive equation by considering damage accumulation in the cohesive zone. To investigate the effect of the residual stress on the fatigue crack growth, we calculated the residual stress distribution due to transient heat flux to the specimen by finite element method. Fatigue crack growth was simulated by the fictitious crack model with repeated loading. The mode-I crack growth rates were compared for the cases with and without the compressive residual stress around the crack tip. It was observed that the mode-I crack growth can be suppressed by compressive residual stress.

  • PDF

Finite Element Stress Analysis according to Apical-coronal Implant Position

  • Kang, Tae-Ho;Kim, Su-Gwan
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.32 no.1
    • /
    • pp.52-59
    • /
    • 2006
  • Purpose: The purpose of this study was to evaluate the influence of apical-coronal implant position on the stress distribution after occlusal and oblique loading. Materials and Methods: The cortical and cancellous bone was assumed to be isotropic, homogeneous, and linearly elastic. The implant was apposed to cortical bone in the crestal region and to cancellous bone for the remainder of the implant-bone interface. The cancellous core was surrounded by 2-mm-thick cortical bone. An axial load of 200 N was assumed and a 200-N oblique load was applied at a buccal inclination of 30 degrees to the center of the pontic and buccal cusps. The 3-D geometry modeled in Iron CAD was interfaced with ANSYS. Results: When only the stress in the bone was compared, the minimal principal stress at load Points A and B, with a axial load applied at 90 degrees or an oblique load applied at 30 degrees, for model 5. The von Mises stress in the screw of model 5 was minimal at Points A and B, for 90- and 30-degree loads. When the von Mises stress of the abutment screw was compared at Points A and B, and a 30-degree oblique load, the maximum principal stress was seen with model 2, while the minimum principal stress was with model 5. In the case of implant, the model that received maximum von Mises stress was model 1 with the load Point A and Point B, axial load applied in 90-degree, and oblique load applied in 30-degree. Discussion and Conclusions: These results suggests that implantation should be done at the supracrestal level only when necessary, since it results in higher stress than when implantation is done at or below the alveolar bone level. Within the limited this study, we recommend the use of supracrestal apical-coronal positioning in the case of clinical indications.

A 3D FEA Model with Plastic Shots for Evaluation of Peening Residual Stress due to Multi-Impacts (다중충돌 피닝잔류응력 평가를 위한 소성숏이 포함된 3차원 유한요소해석 모델)

  • Kim, Tae-Hyung;Lee, Hyungy-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.8
    • /
    • pp.642-653
    • /
    • 2008
  • In this paper, we propose a 3-D finite element (FE) analysis model with combined physical behavior and kinematical impact factors for evaluation of residual stress in multi-impact shot peening. The FE model considers both physical behavior of material and characteristics of kinematical impact. The physical parameters include elastic-plastic FE modeling of shot ball, material damping coefficient, dynamic friction coefficient. The kinematical parameters include impact velocity and diameter of shot ball. Multi-impact FE model consists of 3-D symmetry-cell. We can describe a certain repeated area of peened specimen under equibiaxial residual stress by the cell. With the cell model, we investigate the FE peening coverage, dependency on the impact sequence, effect of repeated cycle. The proposed FE model provides converged and unique solution of surface stress, maximum compressive residual stress and deformation depth at four impact positions. Further, in contrast to the rigid and elastic shots, plastically deformable shot produces residual stresses closer to experimental solutions by X-ray diffraction. Consequently, it is confirmed that the FE model with peening factors and plastic shot is valid for multi-shot peening analyses.

A Study on Dealing with the Stress of Police Officer - Focused on Medical Model and Organizational Health Model - (경찰공무원의 스트레스 관리에 관한 연구 - 의료 및 조직보건 모델을 중심으로 -)

  • Lee, Hwang-Woo;Choi, Eung-Ryul;Jung, Woo-Il
    • Korean Security Journal
    • /
    • no.13
    • /
    • pp.403-422
    • /
    • 2007
  • When people think about stress, they usually consider it as negative. However, stress can be both positive and negative. Positive stress is referred to as eustress, while negative stress is called distress. Stress is derived from the change which can be either positive or negative. Change is an inevitable aspect of life; therefore, people cannot avoid stress. Police works create a lot of stress among officers because of job characteristics. Police works require both physical and emotional strains. These strains lead to stress of officers. Danger, frustration, excessive paperwork, the daily demands of the job, and a lack of understanding from family members, friends, and the public are major causes of stress among police officers. The American Institute of Stress in New York ranks police job among the top ten stress-producing jobs in the United States. In this study, the author proposes the ways of stress management among police officers based on the medical model and the organizational health model. In the medical model, the author introduces the elimination, coping, and counseling as a way of dealing stress as an individual level. In the organizational health model, the author proposes following recommendations from the administrative point of view: 1) rationalization of personnel management system, 2) improvement of the welfare, 3) democratic management of police organization, 4) maintenance of a good partnership with citizens, and 5) development of stress management program for police family members.

  • PDF

Comprarison of Yasufuku's Single Hardening Constitutice Model and Lade's Double Hardening Constitutive Model for Compacted Weathered Granite Soil (다짐화강토에 대한 Yasufuku 의 단일항복면 구성모델과 Lade의 복합항복면 구성모델의 비교)

  • 정진섭
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.3
    • /
    • pp.91-100
    • /
    • 1999
  • Tow constitutive models for weathered granite soil, Yasufuku's constitutive model with a single yield surface and Lade's constitutive model with two intersectiong yield surface compared in terms of their capabilities to accurately capture the observed behavior of compacted weathered grainite soil for various stress-paths. Both the single surface and the double surface models capture the experimentally observed behavior at a variety of stress-paths with good accuracy. The double surface model may model the observed compacted weathered granite soil behavior with better accuracy for proportational loading with increasing stress, but the single surface model may model dilatancy property with better accuracy for p-constant loading with increasing stress ratio.

  • PDF

An Analytical Modeling for Bridging Stress Function Involving Grain Size Distribution in a Polycrystalline Alumina (다결정 알루미나에서 결정립 크기 분포를 포함하는 Bridging 응력함수의 해석적 모델링)

  • 손기선;이성학;백성기
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.12
    • /
    • pp.1449-1458
    • /
    • 1994
  • A new analytical model which can discribe the relationship between the bridging stress and the crack opening displacement was proposed to investigate the microstructural effect on the R-curve behavior in a polycrystalline alumina. The crack opening displacement according to the distance behind the stationary crack tip was measured using in-situ fracture technique in an SEM, and then used for a fitting procedure to obtain the distribution of bridging stress. The current model and an empirical power law relation were introduced into the fitting procedure. The results indicated that the bridging stress function and R-curve computed by the current model were consistent with those computed by the power law relation. The microstructural factor, e.g., the distribution of grain size, was also found to be closely related to the bridging stress. Thus, this model explained well the interaction effect between the distribution of bridging stress and the local-fracture-controlling microstructure, providing important information for the systematic interpretation of microfracture mechanism including R-curve behavior of a monolithic alumina.

  • PDF