• Title/Summary/Keyword: Korean Stress Model

Search Result 5,597, Processing Time 0.043 seconds

Thermal Stress Analysis for the Printed Circuit Board of Electronic Packages (전자장비 회로기판의 열응력해석)

  • Kwon Y. J.;Kim J. A.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.9 no.4
    • /
    • pp.416-424
    • /
    • 2004
  • In this paper, the heat transfer analysis and thermal stress analysis of the PCB(Printed Circuit Board) equipped in electronic Packages are carried out for various may types of chips on the PCB. And two structural PCB models are used in the analyses. The electronic chips on the PCB usually emit heat and this heat generates the thermal stress around the chip. The thermal load due to the heat generation of chips on the PCB may cause the malfunction of the electronic packages such as a monitor. a computer etc. Hence, the PCB should be designed to withstand these thermal loads. In this paper, the heat transfer analysis and thermal stress analysis are executed for the PCB model with pins and the analysis results are compared with the results for the PCB model without pins. The analysis results show that the PCB model without pins is not good for the thermal stress analysis of PCB, even though these two models have similar heat transfer characteristics. The analysis results also show that the highest thermal stress occurs in the pin especially attached to the highest temperature chip, and the PCB constrained to the electronic package on the long side is structurally more stable than other cases. The analyses of the PCB are executed using the finite element analysis code, NISA.

Stress Assesment based on Bio-Signals using Random Forest Algorithm (랜덤포레스트 기법을 이용한 생체 신호 기반의 스트레스 평가 방법)

  • Lim, Taegyoon;Heo, Jeongheon;Jeong, Kyuwon;Ghim, Heirhee
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.1
    • /
    • pp.62-69
    • /
    • 2020
  • Most people suffer from stress during day life because modernized society is very complex and changes fast. Because stress can affect to many kind of physiological phenomena it is even considered as a disease. Therefore, it should be detected earlier, then must be released. When a person is being stressed several bio-signals such as heart rate, etc. are changed. So, those can be detected using medical electronics techniques. In this paper, stress assessment system is studied using random forest algorithm based on heart rate, RR interval and Galvanic skin response. The random forest model was trained and tested using the data set obtained from the bio-signals. It is found that the stress assessment procedure developed in this paper is very useful.

A Study on the Shape Design and Stress Analysis of Wheel Plate for Rolling Stock (2) (철도차량용 휠 플레이트의 응력해석 및 형상설계에 관한 연구(2))

  • 성기득;양원호;조명래;정기현
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.3
    • /
    • pp.221-229
    • /
    • 2001
  • The mechanical stress due to the wheel-rail contact and thermal stress due to the drag braking increase the incidence of wheel failure. So, firstly, stress analyses(mechanical, thermal and combined stress) of wheel plate are performed using 3-dimensional finite element method(FEM). Secondly, the optimum design of wheel plate ;s investigated in order to reduce weight of the wheel based on results of stress analysis. The optimum design is peformed using 2-dimensional axisymmetric F.E. model and its results are verified by 3-dimensional F. E. model.

  • PDF

Optimal three step-stress accelerated life tests for Type-I hybrid censored data

  • Moon, Gyoung Ae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.1
    • /
    • pp.271-280
    • /
    • 2015
  • In this paper, the maximum likelihood estimators for parameters are derived under three step-stress accelerated life tests for Type-I hybrid censored data. The exponential distribution and the cumulative exposure model are considered based on the assumption that a log quadratic relationship exits between stress and the mean lifetime ${\theta}$. The test plan to search optimal stress change times minimizing the asymptotic variance of maximum likelihood estimators are presented. A numerical example to illustrate the proposed inferential procedures and some simulation results to investigate the sensitivity of the optimal stress change times by the guessed parameters are given.

Fundamentals of Stress-Induced Diffusion: Theoretical Approach to Hydrogen Transport through Self-Stressed Electrode

  • Lee, Sung-Jai;Pyun, Su-Il
    • Journal of the Korean Electrochemical Society
    • /
    • v.8 no.1
    • /
    • pp.47-54
    • /
    • 2005
  • This article covers the fundamentals of stress-induced diffusion, focusing on the theoretical model for hydrogen transport through self-stressed electrode. First, the relationship between hydrogen diffusion and macroscopic deformation of the electrode specimen was briefly introduced, and then it was classified into the diffusion-elastic and elasto-diffusive phenomena. Next, the transport equation for the flux of hydrogen caused simultaneously by both the concentration gradient and the stress gradient was theoretically derived. Finally, stress-induced diffusion was discussed on the basis of the numerical solutions to the derived transport equation under the permeable and impermeable boundary conditions.

2-D Model Analysis on the Multilayer Piezoelectric Ceramic Actuators (적층 압전세라믹 액츄에이터의 2차원모델 해석에 관한 연구)

  • 홍재일;류주현;박창엽
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.307-310
    • /
    • 1998
  • Finite element analysis was investigated on the stress distribution at the 2-D model of piezoelectric ceramic actuators. The y direction maximum stress decreased with a(internal electrode gap) size until 0.4 mm and is not much difference with c(external electrode thickness) size. The stress distribution with internal layers is almost same, and the stress distribution of load condition is higher than that of no load condition. The y direction maximum stress increased exponentially with the number of layer and saturated at 260 layers. In the case of defective actuator, the stress distribution is smaller than that of normal actuator.

  • PDF

Development and Application to Fracture Mechanics of Composites with Arbitrary Fiber Size (임의형태(任意形態)의 섬유(纖維)를 가진 복합재료(複合材料) 개발(開發)과 파괴역학(破壞力學)에의 응용(應用)(I) (시편제작을 중심으로))

  • Park, Jung-Do
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.13 no.1
    • /
    • pp.7-14
    • /
    • 1993
  • In order to analyze the stress distribution and stress concentration factors in composite materials, especially, in the short fiber of the reinforced composite materials by photoelastic method, it is necessary to develop the photoelastic model material having short fibers with arbitrary size and orientation. In this paper, the orthotropic photoelastic model material having short fibers for the transparent type photoelastic device was developed by the embedded corrosion fiber method. It was found that the model material was satisfactory to the properties of photoelastic model material, and also that the embedded corrosion fiber method can be employed for developing a model material with arbitrary size and direction to analyze the stress distribution and crack problems of composite materials.

  • PDF

A Study on the Stress and Strain Analysis of Human Muscle Skeletal Model in Kendo Three Typical Attack Motions (세 가지 주요 검도 공격 동작에서의 근-골격계 응력과 번형률 해석에 관한 연구)

  • Lee, Jung-Hyun;Lee, Young-Shin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.9
    • /
    • pp.126-134
    • /
    • 2008
  • Kendo is one of the popular sports in modem life. Head, wrist and thrust attack are the fast skill to get a score on a match. Human muscle skeletal model was developed for biomechanical study. The human model was consists with 19 bone-skeleton and 122 muscles. Muscle number of upper limb, trunk and lower limb part are 28, 60, 34 respectively. Bone was modeled with 3D beam element and muscle was modeled with spar element. For upper limb muscle modelling, rectus abdominis, trapezius, deltoideus, biceps brachii, triceps brachii muscle and other main muscles were considered. Lower limb muscle was modeled with gastrocenemius, gluteus maximus, gluteus medius and related muscles. The biomechanical stress and strain analysis of human muscle was conducted by proposed human bone-muscle finite element analysis model under head, wrist and thrust attack for kendo training.

A Study on the Mechanical Characteristics of a Structure Reinforced by Cylindrical Reinforcement with Fins (핀을 가진 원통형 보강재로 보강된 구조물의 기계적 특성에 관한 연구)

  • 김형준;박정호;김현수;조우석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.804-807
    • /
    • 2002
  • In general, the reinforcement of a structure is performed with cylinders. In this study, it is attempted to analyze the circular reinforcement with fins. And the maximum stress and deflection is investigated fur the circular reinforcement between two plates. The shape of models are : one which has only circular reinforcements of different diameters and one which has circular reinforcements with fins and one which has fin of same length and circular cylinders of different diameters. And in each model, there are two kinds; one is with upper and lower plates and the other with none. The results shows that the maximum stress is less in the model of circular reinforcement with fins than that in the model without fins. And the maximum stress of a model without upper and lower plate is less than that of a model with plates.

  • PDF

Elasto-viscoplastic Constitutive Model of Unsaturated Soil based on Average Skeleton Stress (평균골격응력을 이용한 불포화토의 탄-점소성 구성방정식)

  • Kim, Young-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1199-1203
    • /
    • 2008
  • It has been recognized that unsaturated soil behavior plays an importantrole in geomechanics. In the last decade several constitutive models have been proposed and used in the analysis. Many of them, however, are constructed in the frame work of rate independent model such as elasto-plastic one. Although rate dependency is an important characteristics of soil for both saturated and unsaturated soils, very few models have been developed taking account of rate dependency. In the present paper, we have developed an elasto-viscoplastic model considering an effect of suction based on the overstress-type viscoplasticity with soil structure degradation. In the model, we have adopted an averaged pore pressure composed of pore water pressure and air pressure to determine the effective stress.

  • PDF