• Title/Summary/Keyword: Korean Stress Model

Search Result 5,597, Processing Time 0.034 seconds

Study on Within-Wafer Non-uniformity Using Finite Element Method (CMP 공정에서의 웨이퍼 연마 불균일성에 대한 유한요소해석 연구)

  • Yang, Woo Yul;Sung, In-Ha
    • Tribology and Lubricants
    • /
    • v.28 no.6
    • /
    • pp.272-277
    • /
    • 2012
  • Finite element analysis was carried out using wafer-scale and particle-scale models to understand the mechanism of the fast removal rate(edge effect) at wafer edges in the chemical-mechanical polishing process. This is the first to report that a particle-scale model can explain the edge effect well in terms of stress distribution and magnitude. The results also revealed that the mechanism could not be fully understood by using the wafer-scale model, which has been used in many previous studies. The wafer-scale model neither gives the stress magnitude that is sufficient to remove material nor indicates the coincidence between the stress distribution and the removal rate along a wafer surface.

Korean Red Ginseng and Korean black ginseng extracts, JP5 and BG1, prevent hepatic oxidative stress and inflammation induced by environmental heat stress

  • Song, Ji-Hyeon;Kim, Kui-Jin;Chei, Sungwoo;Seo, Young-Jin;Lee, Kippeum;Lee, Boo-Yong
    • Journal of Ginseng Research
    • /
    • v.44 no.2
    • /
    • pp.267-273
    • /
    • 2020
  • Background: Continuous exposure to high temperatures can lead to heat stress. This stress response alters the expression of multiple genes and can contribute to the onset of various diseases. In particular, heat stress induces oxidative stress by increasing the production of reactive oxygen species. The liver is an essential organ that plays a variety of roles, such as detoxification and protein synthesis. Therefore, it is important to protect the liver from oxidative stress caused by heat stress. Korean ginseng has a variety of beneficial biological properties, and our previous studies showed that it provides an effective defense against heat stress. Methods: We investigated the ability of Korean Red Ginseng and Korean black ginseng extracts (JP5 and BG1) to protect against heat stress using a rat model. We then confirmed the active ingredients and mechanism of action using a cell-based model. Results: Heat stress significantly increased gene and protein expression of oxidative stress-related factors such as catalase and SOD2, but treatment with JP5 (Korean Red Ginseng extract) and BG1 (Korean black ginseng extract) abolished this response in both liver tissue and HepG2 cells. In addition, JP5 and BG1 inhibited the expression of inflammatory proteins such as p-NF-κB and tumor necrosis factor alpha-α. In particular, JP5 and BG1 decreased the expression of components of the NLRP3 inflammasome, a key inflammatory signaling factor. Thus, JP5 and BG1 inhibited both oxidative stress and inflammation. Conclusions: JP5 and BG1 protect against oxidative stress and inflammation induced by heat stress and help maintain liver function by preventing liver damage.

Comoutation of Currents Driven by a Steady Uniform Wind Stress on the East China Sea using a Three-dimensional Numerical Model (三次元數値모델을 使용한 東支那海의 定常均一風의 應力에 의한 海流의 算定)

  • Choi, Byung Ho
    • 한국해양학회지
    • /
    • v.19 no.1
    • /
    • pp.36-43
    • /
    • 1984
  • A three-dimensional hydrodynamical numerical model of the Yellow Sea and the East China Sea is formulated having irregular coastal boundaries and non-uniform depth distribution represntative of nature. The developed model is used to derive the currents driven by a steady uniform wind stress on the Yellow Sea and the East China Sea. Numerical experiments have been performed with the model to determine the response of the shelf to stationary wind stress fields suddenly imposed on the shelf for wind directions of NW and SW winds and wind stress of 1.6dyn/$\textrm{cm}^2$. The dynamical feature of the derived circulation are presented and discussed.

  • PDF

Reliability Evaluation of a Pin Puller via Monte Carlo Simulation

  • Lee, Hyo-Nam;Jang, Seung-gyo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.4
    • /
    • pp.537-547
    • /
    • 2015
  • A Monte Carlo (MC) simulation was conducted to predict the reliability of a newly developed pyrotechnic pin puller. The reliability model is based on the stress-strength interference model that states that failure occurs if the stress exceeds the strength. In this study, the stress is considered to be the energy consumed by movement of a pin shaft, and the strength is considered to be the energy generated by pyrotechnic combustion for driving the pin shaft. Failure of the pin puller can thus be defined as the consumed energy being greater than the generated energy. These energies were calculated using a performance model formulated in the previous study of the present authors. The MC method was used to synthesize the probability densities of the two energies and evaluate the reliability of the pin puller. From a probabilistic perspective, the calculated reliability was compared to a deterministic safety factor. A sensitivity analysis was also conducted to determine which design parameters most affect the reliability.

Improved Turbulence Model on the 3 Dimensional Plane of Symmetry Flow (3차원 대칭단면 유동장에서의 개선된 난류모델)

  • Sohn C. H.
    • Journal of computational fluids engineering
    • /
    • v.2 no.2
    • /
    • pp.1-8
    • /
    • 1997
  • Two versions of anisotropic k-ε turbulence model are incorporated in the modified k-ε model of Sohn et al. to avoid the need for the experimental normal stress value in the model and applied to convergent and divergent flows with strong and adverse pressure gradients in the plane of symmetry of a body of revolution. The models are the nonlinear k-ε model of Speziale and the anisotropic model of Nisizima & Yoshizawa. All of the models yield satisfactory results for relatively complex flow on a plane-of-symmetry boundary layer. The results of the models are compared with those results of experimental normal stress value.

  • PDF

A PHOTOELASTIC STRESS ANALYSIS ON THE SUPPOTING STRUCTURE IN THE MANDIBULAR DISTAL EXTENSION REMOVABLE PARTIAL DENTURE WITH VARIOUS DESINGS OF BACK-ACT10N CLASPS (하악 유리단 국소의치하에서 back-action 클래스프 설계 변화에 따른 광탄성 응력 분석)

  • Lim Soo-Lyoung;Kay Kee-Sung;Ko Yeong-Mu
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.30 no.3
    • /
    • pp.379-400
    • /
    • 1992
  • The purpose of this study was to analyze the magnitude and distribution of stress using a photoelastic model from the mandibular distal extension removable partial dentures with the mesial or distal placement of the occlusal rest and the mesial or distal connection in the back-action clasp with the five various designs of the back-action clasp, that is, the mesial connection and the distal rest, the distal connection and mesial rest, the mesial connection and mesial rest, the distal connection and the mesial and distal rest, and the mesial connection, and the mesial and distal rest. A photoelastic model was made of the epoxy resin(PC-1) and the hardner(PLH-1) with the acrylic resin teeth used and was coated with the plastic cement-1 at the lingual surface of the model and then five kinds of the removable partial dentures on the photoelastic model were set. A unilateral vertical load of 12.5 kg was applied on the central fossa of the first molar with the use of specially designed loading device and the pattern and distribution of the stress of the photoelastic model under each condition was analyzed by the reflective circular polariscope. The following results were obtained. 1. In the back-action clasp with the mesial connection and mesial rest of the case 3, the effect of the stress distribution was the most favorable. 2. In the back-action clasp with the mesial and distal rest, of the case 4 and 5, the stress distribution was more greatly showed in the terminal abutment. 3. Generally, the stress distribution was more favarable in the mesial connection than in the distal connection. 4. In the back-action clasp with the mesial connection of the case 1, 3 and 5, the stress distribution was the most favorable in the mesial rest.

  • PDF

Stress-Strain Model in Compression for Lightweight Concrete using Bottom Ash Aggregates and Air Foam (바텀애시 골재와 기포를 융합한 경량 콘크리트의 압축 응력-변형률 모델)

  • Lee, Kwang-Il;Mun, Ju-Hyun;Yang, Keun-Hyeok;Ji, Gu-Bae
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.3
    • /
    • pp.216-223
    • /
    • 2019
  • The objective of this study is to propose a reliable stress-strain model in compression for lightweight concrete using bottom ash aggregates and air foam(LWC-BF). The slopes of the ascending and descending branches in the fundamental equation form generalized by Yang et al. were determined from the regression analyses of different data sets(including the modulus of elasticity and strains at the peak stress and 50% peak stress at the post-peak performance) obtained from 9 LWC-BF mixtures. The proposed model exhibits a good agreement with test results, revealing that the initial slope decreases whereas the decreasing rate in the stress at the descending branch increases with the increase in foam content. The mean and standard deviation of the normalized root-square mean errors calculated from the comparisons of experimental and predicted stress-strain curves are 0.19 and 0.08, respectively, for the proposed model, which indicates significant lower values when compared with those(1.23 and 0.47, respectively) calculated using fib 2010 model.

Analysis for Strength Estimation of Adhesive Joints (접착이음의 강도평가에 대한 해석)

  • 박성완;이장규
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.98-107
    • /
    • 2004
  • The objectives of this research are to establish the criteria of peel occurrence considering the shape of bond terminus and to compare the strength properties of some adhesive joints. The criteria of feel occurrence at the bond terminus was suggested. Peel loads of some adhesive joint(butt joint, T -shape specimen, single lap joint) were determined from tensile tests. Principal stress distributions of these joints were determined from finite element method analysis. Then, peel occurrence was estimated with intensity of stress singularity ' $K_{prin.}$' when the terminus shape was square, with average principal stress when the terminus shape was rounded. The conclusions are summarized as follows; (1) In the non-filleted model(e.g., butt joint, T-shape specimen), principal stress shows singularity at the bond terminus, intensity of stress(principal stress) singularity ' $K_{prin.}$&apso; can use as the criteria of peel occurrence at the bond terminus. (2) In the filleted model(e.g., single lap joint), principal stress doesn't show singularity at the bond terminus. Average principal stress can use as the criteria of peel occurrence at the bond terminus.'t show singularity at the bond terminus. Average principal stress can use as the criteria of peel occurrence at the bond terminus.

  • PDF

Stress- Strain Behavior Characteristics of Single Work Hardening Model Dependant on the Stress Path (응력경도에 따른 단일항복면구성모델의 응력-변형률 거동 특성)

  • 정진섭;김찬기;박을축
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.3
    • /
    • pp.70-81
    • /
    • 1996
  • Solutions of geotechnical engineering problems require predictions of deformation and stresses during various stages of loading. Powerful numerical methods are available to make such predictions even for complicated problems. To get accurate results, realistic stress-strain relationships of soils are dependent on a number of factors such as soil type, density, stress level and stress path. Attempts are continuously being made to develope analytical models for soils incorporating all such factors. Isotropic compression-expansion test and a series of drained conventional triaxial tests with several stress path for Baekma river sand were performed to investigate stress-strain and volume change characteristics of Lade's single work hardening model dependant on the stress path. In order to predicted of stress-strain and volumetric strain behavior were determined the values of parameters for the mode by the computer program based on the regression analysis. Predicted stress-strain behavior of triaxial compression tests and optional stress path tests for increasing confining pressure with parameters obtained conventional triaxial compression tests agreed with several test results but the prediction results for decreasing confining pressure reduced triaxial compression tests make a little difference with test results.

  • PDF

Development of Model for Seismic Qualification of Electronic Enclosure for Nuclear Power Plant (원자력발전소용 전자기기함을 위한 내진검증 해석 모델 개발연구)

  • Sur, Uk-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.1
    • /
    • pp.47-52
    • /
    • 2011
  • In this paper, we describe the development of a finite-element model for seismic qualification. This paper presents finite-element analysis model of the electronic enclosure to be used at Arkansas nuclear power plant, USA. The verified model predicts natural frequencies within 5% error for all major modes below 50 Hz. The finite element lumped mass approach and the finite element stiffness approach using the COSMOSM finite element code is applied for static, eigenvalue, and dynamic analyses of the mathematical model of this system. The FEM model indicates that the stress levels corresponding to the specified loading conditions are below the allowable stress levels that have been specified in the AISC Code. The findings conclude that the electronic enclosure will withstand the seismic levels stated in the reference documents.