• Title/Summary/Keyword: Korean Society of Mycology

Search Result 3,295, Processing Time 0.029 seconds

Nucleus-Selective Expression of Laccase Genes in the Dikaryotic Strain of Lentinula edodes

  • Ha, Byeongsuk;Lee, Sieun;Kim, Sinil;Kim, Minseek;Moon, Yoon Jung;Song, Yelin;Ro, Hyeon-Su
    • Mycobiology
    • /
    • v.45 no.4
    • /
    • pp.379-384
    • /
    • 2017
  • In mating of Lentinula edodes, dikaryotic strains generated from certain monokaryotic strains such as the B2 used in this study tend to show better quality of fruiting bodies regardless of the mated monokaryotic strains. Unlike B2, dikaryotic strains generated from B16 generally show low yields, with deformed or underdeveloped fruiting bodies. This indicates that the two nuclei in the cytoplasm do not contribute equally to the physiology of dikaryotic L. edodes, suggesting an expression bias in the allelic genes of the two nuclei. To understand the role of each nucleus in dikaryotic strains, we investigated single nucleotide polymorphisms (SNPs) in laccase genes of monokaryotic strains to reveal nuclear origin of the expressed mRNAs in dikaryotic strain. We performed reverse transcription PCR (RT-PCR) analysis using total RNAs extracted from dikaryotic strains (A5B2, A18B2, and A2B16) as well as from compatible monokaryotic strains (A5, A18, and B2 for A5B2 and A18B2; A2 and B16 for A2B16). RT-PCR results revealed that Lcc1, Lcc2, Lcc4, Lcc7, and Lcc10 were the mainly expressed laccase genes in the L. edodes genome. To determine the nuclear origin of these laccase genes, the genomic DNA sequences in monokaryotic strains were analyzed, thereby revealing five SNPs in Lcc4 and two in Lcc7. Subsequent sequence analysis of laccase mRNAs expressed in dikaryotic strains revealed that these were almost exclusively expressed from B2-originated nuclei in A5B2 and A18B2 whereas B16 nucleus did not contribute to laccase expression in A2B16 strain. This suggests that B2 nucleus dominates the expression of allelic genes, thereby governing the physiology of dikaryons.

Syphacia obvelata: A New Hope to Induction of Intestinal Immunological Tolerance in C57BL/6 Mice

  • Taghipour, Niloofar;Mosaffa, Nariman;Rostami-Nejad, Mohammad;Homayoni, Mohamad Mohsen;Mortaz, Esmaeil;Aghdaei, Hamid Asadzadeh;Zali, Mohammad Reza
    • Parasites, Hosts and Diseases
    • /
    • v.55 no.4
    • /
    • pp.439-444
    • /
    • 2017
  • The ability of nematodes to manipulate the immune system of their host towards a Th2 and T regulatory responses has been proposed to suppress the inflammatory response. Clinical trials have proposed a useful effect of helminth infections on improvement of inflammatory disorders. In this study, we investigated the immunomodulatory effect of Syphacia obvelata infection to induce intestinal tolerance in C57BL/6 mice. Mice were infected through the cagemates with self-infected BALB/c mice. Four weeks post-infection, expression levels of $IFN-{\gamma}$, $TNF-{\alpha}$, IL-17, and IL-10 were assessed in the supernatant of mesenteric lymph node (MLN) culture. $Foxp3^+Treg$ were measured in MLN cells by flow cytometry. In the S. obvelata-infected group, the percentage of Tregs ($5.2{\pm}0.4$) was significantly higher than the control ($3.6{\pm}0.5$) (P<0.05). The levels of IL-10 ($55.3{\pm}2.2$ vs $35.2{\pm}3.2$), IL-17 ($52.9{\pm}3.8$ vs $41{\pm}1.8$), $IFN-{\gamma}$ ($44.8{\pm}4.8$ vs $22.3{\pm}2.3$) and $TNF-{\alpha}$ ($71.1{\pm}5.8$ vs $60.1{\pm}3.3$) were significantly increased in infected mice compared to the control group (P<0.05). The above results showed the potential effects of S. obvelata to induce intestinal tolerance. Therefore, it seems that S. obvelata may increase the immunological suppressive function in the intestinal tract.

Study on the Genetic Diversity and Biological Characteristics of Wild Agaricus bisporus Strains from China

  • Wang, Zesheng;Liao, Jianhua;Chen, Meiyuan;Wang, Bo;Li, Hongrong;Lu, Zhenghui;Guo, Zhongjie
    • 한국균학회소식:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.3-13
    • /
    • 2009
  • 90 wild Agaricus strains from China, including 44 Agaricus bisporus strains identified preliminarily by isozyme electrophoresis, were studied by the techniques of SRAP and ISSR. 18 special SRAP bands and 12 special ISSR bands were analyzed, the strains were clustered and a demdrogram was obtained. The results showed that the strains were divided into 2 groups, wild A. bisporus group and the other Agaricus group. It is similar to the result of isozyme electrophoresis. 41 wild A. bisporus strains from Sichuan and Tibet were divided into 4 groups based on their growing places, suggesting the regionally difference of the strains to be quite obvious. Some white wild A. bisporus strains from Xinjiang and Tibet had special patterns, resulting in lower coefficient values with other wild A. bisporus strains. The biological characteristics of three wild A. bisporus strains were analyzed, and the results showed: 1. The wild strains grew slowly on PDA medium with weak appressed mycelia, and grew normally in kernel or fermented cottonseed shell substrate. 2. They grew faster than control strain As2796 under lower temperature of $16^{\circ}C$, and higher temperature of $32^{\circ}C$, with optimum growing temperature of $20-24^{\circ}C$, which was $4^{\circ}C$ lower than that of control strain. 3. In the cultivation with manure compost via twice fermentation, the mycelia grew normally in compost and quite slowly in casing soil, and the fruitbodies occurred less and late with easily opening and low production. 4. The fruitbody was off-white with flat and scaled cap, long stipe and dark gill. The bisporus basidia occupied 70-80% and trisporus basidia 20-30% of the total basidia. 5. Heterokaryotic monospore isolates could fruit in cultivation, and the homokaryotic isolates could cross with those derived from overseas wild A.bisporus strains. 6. The electrophoresis phenotype of isozymes such as esterase etc. belonged to high production type (H type). 7. The RAPD patterns made much difference from those of high production, good quality or hybrid strains, which indicated that the wild strains produce a new kind of RAPD type.

  • PDF

BSA-Seq Technologies Identify a Major QTL for Clubroot Resistance in Chinese Cabbage (Brassica rapa ssp. pekinesis)

  • Yuan, Yu-Xiang;Wei, Xiao-Chun;Zhang, Qiang;Zhao, Yan-Yan;Jiang, Wu-Sheng;Yao, Qiu-Ju;Wang, Zhi-Yong;Zhang, Ying;Tan, Yafei;Li, Yang;Xu, Qian;Zhang, Xiao-Wei
    • 한국균학회소식:학술대회논문집
    • /
    • 2015.05a
    • /
    • pp.41-41
    • /
    • 2015
  • BSA-seq technologies, combined Bulked Segregant Analysis (BSA) and Next-Generation Sequencing (NGS), are making it faster and more efficient to establish the association of agronomic traits with molecular markers or candidate genes, which is the requirement for marker-assisted selection in molecular breeding. Clubroot disease, caused by Plasmodiophora brassicae, is a serious threat to Brassica crops. Even we have breed new clubroot resistant varieties of Chinese cabbage (B. rapa ssp. pekinesis), the underlying genetic mechanism is unclear. In this study, an $F_2$ population of 340 plants were inoculated with P. brassicae from Xinye (Pathotype 2 on the differentials of Williams). Resistance phenotype segregation ratio for the populations fit a 3:1 (R:S) segregation model, consistent with a single dominant gene model. Super-BSA, using re-sequencing the parents, extremely R and S DNA pools with each 50 plants, revealed 3 potential candidate regions on the chromosome A03, with the most significant region falling between 24.30 Mb and 24.75 Mb. A linkage map with 31 markers in this region was constructed with several closely linked markers identified. A Major QTL for clubroot resistance, CRq, which was identified with the peak LOD score at 169.3, explaining 89.9% of the phenotypic variation. And we developed a new co-segregated InDel marker BrQ-2. Joint BSA-seq and traditional QTL analysis delimited CRq to an 250 kb genomic region, where four TIR-NBS-LRR genes (Bra019409, Bra019410, Bra019412 and Bra019413) clustered. The CR gene CRq and closely linked markers will be highly useful for breeding new resistant Chinese cabbage cultivars.

  • PDF

Morphological and Genetic Characteristics of Colletotrichum gloeosporioides Isolated from Newly Emerging Static-Symptom Anthracnose in Apple

  • Jeon, Yongho;Cheon, Wonsu
    • 한국균학회소식:학술대회논문집
    • /
    • 2014.10a
    • /
    • pp.34-34
    • /
    • 2014
  • Filamentous fungi of the genus Colletotrichum (teleomorph, Glomerella) are considered major plant pathogens worldwide. Cereals, legumes, vegetables, and fruit trees may be seriously affected by this pathogen (1). Colletotrichum species cause typical disease symptoms known as anthracnoses, characterized by sunken necrotic tissue, where orange conidial masses are produced. Anthracnose appears in both developing and mature plant tissues (2). We investigated disease occurrence in apple orchards from 2013 to 2014 in northern Gyeongbuk province, Korea. Typical anthracnose with advanced symptoms was observed in all apple orchards studied. Of late, static fruit spot symptoms are being observed in apple orchards. A small lesion, which does not expand further and remains static until the harvesting season, is observed at the beginning of fruit growth period. In our study, static symptoms, together with the typical symptoms, were observed on apples. The isolated fungus was tested for pathogenicity on cv. 'Fuji apple' (fully ripe fruits, unripe fruits, and cross-section of fruits) by inoculating the fruits with a conidial suspension ($10^5$ conidia/ml). In apple inoculated with typical anthracnose fungus, the anthracnose symptoms progressed, and dark lesions with salmon-colored masses of conidia were observed on fruit, which were also soft and sunken. However, in apple inoculated with fungi causing static symptoms, the size of the spots did not increase. Interestingly, the shape and size of the conidia and the shape of the appressoria of both types of fungi were found to be similar. The conidia of the two types of fungi were straight and cylindrical, with an obtuse apex. The culture and morphological characteristics of the conidia were similar to those of C. gloeosporioides (5). The conidia of C. gloeosporioides germinate and form appressoria in response to chemical signals such as host surface wax and the fruitripening hormone ethylene (3). In this study, the spores started to germinate 4 h after incubation with an ethephon suspension. Then, the germ tubes began to swell, and subsequently, differentiation into appressoria with dark thick walls was completed by 8 h. In advanced symptoms, fungal spores of virtually all the appressoria formed primary hyphae within 16 h. However, in the static-symptom fungus spores, no primary hyphae formed by 16 h. The two types of isolates exhibited different growth rates on medium containing apple pectin, Na polypectate, or glucose as the sole carbon. Static-symptom fungi had a >10% reduction in growth (apple pectin, 14.9%; Na polypectate, 27.7%; glucose, 10.4%). The fungal isolates were also genetically characterized by sequencing. ITS regions of rDNA, chitin synthase 1 (CHS1), actin (ACT), and ${\beta}$-tubulin (${\beta}t$) were amplified from isolates using primer pairs ITS 1 and ITS 4 (4), CHS-79F and CHS-354R, ACT-512F and ACT-783R, and T1 and ${\beta}t2$ (5), respectively. The resulting sequences showed 100% identity with sequences of C. gloeosporioides at KC493156, and the sequence of the ${\beta}$t gene showed 100% identity with C. gloeosporioides at JX009557.1. Therefore, sequence data from the four loci studied proves that the isolated pathogen is C. gloeosporioides. We also performed random amplified polymorphic DNA-PCR, which showed clearly differentiated subgroups of C. gloeosporioides genotypes. The clustering of these groups was highly related to the symptom types of the individual strains.

  • PDF

Genomic Analysis of the Xanthoria elegans and Polyketide Synthase Gene Mining Based on the Whole Genome

  • Xiaolong Yuan;Yunqing Li;Ting Luo;Wei Bi;Jiaojun Yu;Yi Wang
    • Mycobiology
    • /
    • v.51 no.1
    • /
    • pp.36-48
    • /
    • 2023
  • Xanthoria elegans is a lichen symbiosis, that inhabits extreme environments and can absorb UV-B. We reported the de novo sequencing and assembly of X. elegans genome. The whole genome was approximately 44.63 Mb, with a GC content of 40.69%. Genome assembly generated 207 scaffolds with an N50 length of 563,100 bp, N90 length of 122,672 bp. The genome comprised 9,581 genes, some encoded enzymes involved in the secondary metabolism such as terpene, polyketides. To further understand the UV-B absorbing and adaptability to extreme environments mechanisms of X. elegans, we searched the secondary metabolites genes and gene-cluster from the genome using genome-mining and bioinformatics analysis. The results revealed that 7 NR-PKSs, 12 HR-PKSs and 2 hybrid PKS-PKSs from X. elegans were isolated, they belong to Type I PKS (T1PKS) according to the domain architecture; phylogenetic analysis and BGCs comparison linked the putative products to two NR-PKSs and three HR-PKSs, the putative products of two NR-PKSs were emodin xanthrone (most likely parietin) and mycophelonic acid, the putative products of three HR-PKSs were soppilines, (+)-asperlin and macrolactone brefeldin A, respectively. 5 PKSs from X. elegans build a correlation between the SMs carbon skeleton and PKS genes based on the domain architecture, phylogenetic and BGC comparison. Although the function of 16 PKSs remains unclear, the findings emphasize that the genes from X. elegans represent an unexploited source of novel polyketide and utilization of lichen gene resources.

Biological Control of Soil-borne Diseases with Antagonistic Bacteria

  • Kim, Byung-Ryun;Hahm, Soo-Sang;Han, Kwang-Seop;Kim, Jong-Tae;Park, In-Hee
    • 한국균학회소식:학술대회논문집
    • /
    • 2016.05a
    • /
    • pp.25-25
    • /
    • 2016
  • Biological control has many advantages as a disease control method, particularly when compared with pesticides. One of the most important benefits is that biological control is an environmental friendly method and does not introduce pollutants into the environment. Another great advantage of this method is its selectivity. Selectivity is the important factor regarding the balance of agricultural ecosystems because a great damage to non target species can lead to the restriction of natural enemies' populations. The objective of this research was to evaluate the effects of several different bacterial isolates on the efficacy of biological control of soil borne diseases. White rot caused by Sclerotium cepivorum was reported to be severe disease of garlic and chive. The antifungal bacteria Burkholderia pyrrocinia CAB08106-4 was tested in field bioassays for its ability to suppress white rot disease. In field tests, B. pyrrocinia CAB08106-4 isolates suppressed white rot in garlic and chive, with the average control efficacies of 69.6% and 58.9%, respectively. In addition, when a culture filtrate of B. pyrrocinia CAB08106-4 was sprayed onto wounded garlic bulbs after inoculation with a Penicillium hirstum spore suspension in a cold storage room ($-2^{\circ}C$), blue mold disease on garlic bulbs was suppressed, with a control efficacy of 79.2%. These results suggested that B. pyrrocinia CAB08106-4 isolates could be used as effective biological control agents against both soil-borne and post-harvest diseases of Liliaceae. Chinese cabbage clubroot caused by Plasmodiophora brassicae was found to be highly virulent in Chinese cabbage, turnips, and cabbage. In this study, the endophytic bacterium Flavobacterium hercynium EPB-C313, which was isolated from Chinese cabbage tissues, was investigated for its antimicrobial activity by inactivating resting spores and its control effects on clubroot disease using bioassays. The bacterial cells, culture solutions, and culture filtrates of F. hercynium EPB-C313 inactivated the resting spores of P. brassicae, with the control efficacies of 90.4%, 36.8%, and 26.0%, respectively. Complex treatments greatly enhanced the control efficacy by 63.7% in a field of 50% diseased plants by incorporating pellets containing organic matter and F. hercynium EPB-C313 in soil, drenching seedlings with a culture solution of F. hercynium EPB-C313, and drenching soil for 10 days after planting. Soft rot caused by Pectobacterium carotovorum subsp. carotovorum was reported to be severe disease to Chinese cabbage in spring seasons. The antifungal bacterium, Bacillus sp. CAB12243-2 suppresses the soft rot disease on Chinese cabbage with 73.0% control efficacy in greenhouse assay. This isolate will increase the utilization of rhizobacteria species as biocontrol agents against soft rot disease of vegetable crops. Sclerotinia rot caused by Sclerotinia sclerotiorum has been reported on lettuce during winter. An antifungal isolate of Pseudomonas corrugata CAB07024-3 was tested in field bioassays for its ability to suppress scleritinia rot. This antagonistic microorganism showed four-year average effects of 63.1% of the control in the same field. Furthermore, P. corrugata CAB07024-3 has a wide antifungal spectrum against plant pathogens, including Sclerotinia sclerotiorum, Sclerotium cepivorum, Botrytis cinerea, Colletotrichum gloeosporioides, Phytophotra capsici, and Pythium myriotylum.

  • PDF

Genetic Control of Asexual Sporulation in Fusarium graminearum

  • Son, Hokyoung;Kim, Myung-Gu;Chae, Suhn-Kee;Lee, Yin-Won
    • 한국균학회소식:학술대회논문집
    • /
    • 2014.10a
    • /
    • pp.15-15
    • /
    • 2014
  • Fusarium graminearum (teleomorph Gibberella zeae) is an important plant pathogen that causes head blight of major cereal crops such as wheat, barley, and rice, as well as causing ear and stalk rot on maize worldwide. Plant diseases caused by this fungus lead to severe yield losses and accumulation of harmful mycotoxins in infected cereals [1]. Fungi utilize spore production as a mean to rapidly avoid unfavorable environmental conditions and to amplify their population. Spores are produced sexually and asexually and their production is precisely controlled. Upstream developmental activators consist of fluffy genes have been known to orchestrate early induction of condiogenesis in a model filamentous fungus Aspergillus nidulans. To understand the molecular mechanisms underlying conidiogenesis in F. graminearum, we characterized functions of the F. graminearum fluffy gene homologs [2]. We found that FlbD is conserved regulatory function for conidiogenesis in both A. nidulans and F. graminearum among five fluffy gene homologs. flbD deletion abolished conidia and perithecia production, suggesting that FlbD have global roles in hyphal differentiation processes in F. graminearum. We further identified and functionally characterized the ortholog of AbaA, which is involved in differentiation from vegetative hyphae to conidia and known to be absent in F. graminearum [3]. Deletion of abaA did not affect vegetative growth, sexual development, or virulence, but conidium production was completely abolished and thin hyphae grew from abnormally shaped phialides in abaA deletion mutants. Overexpression of abaA resulted in pleiotropic defects such as impaired sexual and asexual development, retarded conidium germination, and reduced trichothecene production. AbaA localized to the nuclei of phialides and terminal cells of mature conidia. Successful interspecies complementation using A. nidulans AbaA and the conserved AbaA-WetA pathway demonstrated that the molecular mechanisms responsible for AbaA activity are conserved in F. graminearum as they are in A. nidulans. F. graminearum ortholog of Aspergillus nidulans wetA has been shown to be involved in conidiogenesis and conidium maturation [4]. Deletion of F. graminearum wetA did not alter mycelial growth, sexual development, or virulence, but the wetA deletion mutants produced longer conidia with fewer septa, and the conidia were sensitive to acute stresses, such as oxidative stress and heat stress. Furthermore, the survival rate of aged conidia from the F. graminearum wetA deletion mutants was reduced. The wetA deletion resulted in vigorous generation of single-celled conidia through autophagy-dependent microcycle conidiation, indicating that WetA functions to maintain conidia dormancy by suppressing microcycle conidiation in F. graminearum. In A. nidulans, FlbB physically interacts with FlbD and FlbE, and the resulting FlbB/FlbE and FlbB/FlbD complexes induce the expression of flbD and brlA, respectively. BrlA is an activator of the AbaA-WetA pathway. AbaA and WetA are required for phialide formation and conidia maturation, respectively [5]. In F. graminearum, the AbaA-WetA pathway is similar to that of A. nidulans, except a brlA ortholog does not exist. Amongst the fluffy genes, only fgflbD has a conserved role for regulation of the AbaA-WetA pathway.

  • PDF

Influence of Temperature on the Bacterial Community in Substrate and Extracellular Enzyme Activity of Auricularia cornea

  • Zhang, Xiaoping;Zhang, Bo;Miao, Renyun;Zhou, Jie;Ye, Lei;Jia, Dinghong;Peng, Weihong;Yan, Lijuan;Zhang, Xiaoping;Tan, Wei;Li, Xiaolin
    • Mycobiology
    • /
    • v.46 no.3
    • /
    • pp.224-235
    • /
    • 2018
  • Temperature is an important environmental factor that can greatly influence the cultivation of Auricularia cornea. In this study, lignin peroxidase, laccase, manganese peroxidase, and cellulose in A. cornea fruiting bodies were tested under five different temperatures ($20^{\circ}C$, $25^{\circ}C$, $30^{\circ}C$, $35^{\circ}C$, and $40^{\circ}C$) in three different culture periods (10 days, 20 days and 30 days). In addition, the V4 region of bacterial 16S rRNA genes in the substrate of A. cornea cultivated for 30 days at different temperatures were sequenced using next-generation sequencing technology to explore the structure and diversity of bacterial communities in the substrate. Temperature and culture days had a significant effect on the activities of the four enzymes, and changes in activity were not synchronized with changes in temperature and culture days. Overall, we obtained 487,694 sequences from 15 samples and assigned them to 16 bacterial phyla. Bacterial community composition and structure in the substrate changed when the temperature was above $35^{\circ}C$. The relative abundances of some bacteria were significantly affected by temperature. A total of 35 genera at five temperatures in the substrate were correlated, and 41 functional pathways were predicted in the study. Bacterial genes associated with the membrane transport pathway had the highest average abundance (16.16%), and this increased at $35^{\circ}C$ and $40^{\circ}C$. Generally, different temperatures had impacts on the physiological activity of A. cornea and the bacterial community in the substrate; therefore, the data presented herein should facilitate cultivation of A. cornea.

Diversity and Plant Growth Promoting Capacity of Endophytic Fungi Associated with Halophytic Plants from the West Coast of Korea

  • Khalmuratova, Irina;Kim, Hyun;Nam, Yoon-Jong;Oh, Yoosun;Jeong, Min-Ji;Choi, Hye-Rim;You, Young-Hyun;Choo, Yeon-Sik;Lee, In-Jung;Shin, Jae-Ho;Yoon, Hyeokjun;Kim, Jong-Guk
    • Mycobiology
    • /
    • v.43 no.4
    • /
    • pp.373-383
    • /
    • 2015
  • Five halophytic plant species, Suaeda maritima, Limonium tetragonum, Suaeda australis, Phragmites australis, and Suaeda glauca Bunge, which are native to the Muan salt marsh of South Korea, were examined for fungal endophytes by sequencing the internal transcribed spacer (ITS) region containing ITS1, 5.8S rRNA, and ITS2. In total, 160 endophytic fungal strains were isolated and identified from the roots of the 5 plant species. Taxonomically, all 160 strains belonged to the phyla Ascomycota, Basidiomycota, and Zygomycota. The most dominant genus was Fusarium, followed by the genera Penicillium and Alternaria. Subsequently, using 5 statistical methods, the diversity indices of the endophytes were determined at genus level. Among these halophytic plants, P. australis was found to host the greatest diversity of endophytic fungi. Culture filtrates of endophytic fungi were treated to Waito-C rice seedlings for plant growth-promoting effects. The fungal strain Su-3-4-3 isolated from S. glauca Bunge provide the maximum plant length (20.1 cm) in comparison with wild-type Gibberella fujikuroi (19.6 cm). Consequently, chromatographic analysis of the culture filtrate of Su-3-4-3 showed the presence of physiologically active gibberellins, $GA_1$ (0.465 ng/mL), $GA_3$ (1.808 ng/mL) along with other physiologically inactive $GA_9$ (0.054 ng/mL) and $GA_{24}$ (0.044 ng/mL). The fungal isolate Su-3-4-3 was identified as Talaromyces pinophilus.