DOI QR코드

DOI QR Code

Genomic Analysis of the Xanthoria elegans and Polyketide Synthase Gene Mining Based on the Whole Genome

  • Xiaolong Yuan (Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang Normal University) ;
  • Yunqing Li (Yunnan Key Laboratory of Forest Plant Cultivation and Utilization/National Forestry and Grassland Administration Key Laboratory of Yunnan Rare and Endangered Species Conservation and Propagation, Yunnan Academy of Forestry and Grassland) ;
  • Ting Luo (Yunnan Key Laboratory of Forest Plant Cultivation and Utilization/National Forestry and Grassland Administration Key Laboratory of Yunnan Rare and Endangered Species Conservation and Propagation, Yunnan Academy of Forestry and Grassland) ;
  • Wei Bi (Yunnan Key Laboratory of Forest Plant Cultivation and Utilization/National Forestry and Grassland Administration Key Laboratory of Yunnan Rare and Endangered Species Conservation and Propagation, Yunnan Academy of Forestry and Grassland) ;
  • Jiaojun Yu (Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang Normal University) ;
  • Yi Wang (Yunnan Key Laboratory of Forest Plant Cultivation and Utilization/National Forestry and Grassland Administration Key Laboratory of Yunnan Rare and Endangered Species Conservation and Propagation, Yunnan Academy of Forestry and Grassland)
  • Received : 2022.06.08
  • Accepted : 2022.12.29
  • Published : 2023.02.28

Abstract

Xanthoria elegans is a lichen symbiosis, that inhabits extreme environments and can absorb UV-B. We reported the de novo sequencing and assembly of X. elegans genome. The whole genome was approximately 44.63 Mb, with a GC content of 40.69%. Genome assembly generated 207 scaffolds with an N50 length of 563,100 bp, N90 length of 122,672 bp. The genome comprised 9,581 genes, some encoded enzymes involved in the secondary metabolism such as terpene, polyketides. To further understand the UV-B absorbing and adaptability to extreme environments mechanisms of X. elegans, we searched the secondary metabolites genes and gene-cluster from the genome using genome-mining and bioinformatics analysis. The results revealed that 7 NR-PKSs, 12 HR-PKSs and 2 hybrid PKS-PKSs from X. elegans were isolated, they belong to Type I PKS (T1PKS) according to the domain architecture; phylogenetic analysis and BGCs comparison linked the putative products to two NR-PKSs and three HR-PKSs, the putative products of two NR-PKSs were emodin xanthrone (most likely parietin) and mycophelonic acid, the putative products of three HR-PKSs were soppilines, (+)-asperlin and macrolactone brefeldin A, respectively. 5 PKSs from X. elegans build a correlation between the SMs carbon skeleton and PKS genes based on the domain architecture, phylogenetic and BGC comparison. Although the function of 16 PKSs remains unclear, the findings emphasize that the genes from X. elegans represent an unexploited source of novel polyketide and utilization of lichen gene resources.

Keywords

Acknowledgement

This work was supported by a grant from the National Natural Science Foundation of China (31860177), General Project of Basic Research Program in Yunnan Province (202101AT070218), the Reserve Talents for Young and Middle-aged Academic and Technical Leaders of the Yunnan Province (202205AC160044).

References

  1. Erken MT, Cansaran-Duman D, Tanman U. In silico prediction of type I PKS gene modules in nine lichenized fungi. Biotechnol Biotec Eq. 2021;35(1):376-383. https://doi.org/10.1080/13102818.2021.1879679
  2. Elkhateeb WA, Ghwas DEE, Daba GM. Lichens uses surprising uses of lichens that improve human life. J Biomed Res Environ Sci. 2022;3(2):189-194. https://doi.org/10.37871/jbres1420
  3. Calcott MJ, Ackerley DF, Knight A, et al. Secondary metabolism in the lichen symbiosis. Chem Soc Rev. 2018;47(5):1730-1760. https://doi.org/10.1039/C7CS00431A
  4. Kim W, Liu R, Woo S, et al. Linking a gene cluster to atranorin, a major cortical substance of lichens, through genetic dereplication and heterologous expression. mBio. 2021;12(3):e01111-21. https://doi.org/10.1128/mBio.01111-21
  5. Devashree PA, Dikshit A. Lichens: fungal symbionts and their secondary metabolites. In: Joginder S and Praveen G, editors. New and future developments in microbial biotechnology and bioengineering. Amsterdam: Elsevier Science B.V; 2021. p. 107-115.
  6. Cornejo A, Salgado F, Caballero J, et al. Secondary metabolites in Ramalina terebrata detected by UHPLC/ESI/MS/MS and identification of parietin as tau protein inhibitor. Int J Mol Sci. 2016;17(8):1303.
  7. Abdel-Hameed M, Bertrand RL, Piercey-Normore MD, et al. Putative identification of the usnic acid biosynthetic gene cluster by de novo whole-genome sequencing of a lichen-forming fungus. Fungal Biol. 2016;120(3):306-316. https://doi.org/10.1016/j.funbio.2015.10.009
  8. Nybakken L, Solhaug KA, Bilger W, et al. The lichens Xanthoria elegans and Cetraria islandica maintain a high protection against UV-B radiation in arctic habitats. Oecologia. 2004;140(2):211-216. https://doi.org/10.1007/s00442-004-1583-6
  9. Wang HY, Li HM, Shi N, et al. The HPLC analysis of the lichen substances in five species of Xanthoria (Ascomycota). Mycosystema. 2003;22(4):536-541.
  10. Mamut R, Abbas A. The determination of usnic acid by HPLC method in Xanthoria elegans and their antibacterial activity. Food Sci Technol. 2012;37(8):216-219.
  11. Basile A, Rigano D, Loppi S, et al. Antiproliferative, antibacterial and antifungal activity of the lichen Xanthoria parietina and its secondary metabolite parietin. Int J Mol Sci. 2015;16(4):7861-7875. https://doi.org/10.3390/ijms16047861
  12. Gausla Y, Ustvedt EM. Is parietin a UV-B or a blue-light screening pigment in the lichen Xanthoria parietina? Photochem Photobiol Sci. 2003;2(4):424-432. https://doi.org/10.1039/b212532c
  13. Gagunashvili AN, Davidsson SP, Jonsson ZO, et al. Cloning and heterologous transcription of a polyketide synthase gene from the lichen Solorina crocea. Mycol Res. 2009;113(3):354-363. https://doi.org/10.1016/j.mycres.2008.11.011
  14. Armaleo D, Sun X, Culberson C. Insights from the first putative biosynthetic gene cluster for a lichen depside and depsidone. Mycologia. 2011;103(4):741-754. https://doi.org/10.3852/10-335
  15. Sabatini M, Comba S, Altabe S, et al. Biochemical characterization of the minimal domains of an iterative eukaryotic polyketide synthase. Febs J. 2018;285(23):4494-4511. https://doi.org/10.1111/febs.14675
  16. Cox RJ. Polyketides, proteins and genes in fungi: programmed nano-machines begin to reveal their secrets. Org Biomol Chem. 2007;5(13):2010-2026. https://doi.org/10.1039/b704420h
  17. Kage H, Riva E, Parascandolo JS, et al. Chemical chain termination resolves the timing of ketoreduction in a partially reducing iterative type I polyketide synthase. Org Biomol Chem. 2015;13(47):11414-11417. https://doi.org/10.1039/C5OB02009C
  18. Grau MF, Entwistle R, Chiang YM, et al. Hybrid transcription factor engineering activates the silent secondary metabolite gene cluster for (+)-asperlin in Aspergillus nidulans. ACS Chem Biol. 2018;13(11):3193-3205. https://doi.org/10.1021/acschembio.8b00679
  19. Park SY, Choi J, Lee GW, et al. Draft genome sequence of Umbilicaria muehlenbergii KoLRILF000956, a lichen-forming fungus amenable to genetic manipulation. Genome Announc. 2014;2(2):e00357-14.
  20. Yamamoto Y, Mizuguchi R, Yamada Y. Tissue cultures of Usnea rubescens and Ramalina yasudae and production of usnic acid in their cultures. Agric Biol Chem. 1985;49(11):3347-3348. https://doi.org/10.1271/bbb1961.49.3347
  21. Luo R, Liu B, Xie Y, et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. GigaScience. 2015;4(1):1-16. https://doi.org/10.1186/s13742-015-0069-2
  22. Bao W, Kojima K, Kohany O. Repbase update, a database of repetitive elements in eukaryotic genomes. Mob DNA. 2015;6(1):11.
  23. Kapitonov V, Jurka J. A universal classification of eukaryotic transposable elements implemented in repbase. Nat Rev Genet. 2008;9(5):411-412. https://doi.org/10.1038/nrg2165-c1
  24. Lowe T, Eddy S. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997;25(5):955-964. https://doi.org/10.1093/nar/25.5.955
  25. Lagesen K, Hallin P, Rodland E, et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 2007;35(9):3100-3108. https://doi.org/10.1093/nar/gkm160
  26. Kalvari I, Nawrocki E, Argasinska J, et al. Noncoding RNA analysis using the rfam database. Curr Protoc Bioinformatics. 2018;62(1):e51.
  27. Stanke M, Morgenstern B. AUGUSTUS: a web server for gene prediction in eukaryotes that allows user-defined constraints. Nucleic Acids Res. 2005;33(2):465-467. https://doi.org/10.1093/nar/gki458
  28. Majoros WH, Pertea M, Salzberg SL. TigrScan and GlimmerHMM: two open source ab initio eukaryotic gene-finders. Bioinformatics. 2004;20(16):2878-2879. https://doi.org/10.1093/bioinformatics/bth315
  29. Korf I. Gene finding in novel genomes. BMC Bioinf. 2004;5(1):1-9. https://doi.org/10.1186/1471-2105-5-59
  30. Haas BJ, Salzberg SL, Zhu W, et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the program to assemble spliced alignments. Genome Biol. 2008;9(1):R7-22. https://doi.org/10.1186/gb-2008-9-1-r7
  31. Zhang D, Yu J, Ma C, et al. Genomic analysis of the mycoparasite Pestalotiopsis sp. PG52. Pol J Microbiol. 2021;70(2):189-199. https://doi.org/10.33073/pjm-2021-016
  32. Blin K, Shaw S, Kloosterman AM, et al. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res. 2021; 49(W1):W29-W35. https://doi.org/10.1093/nar/gkab335
  33. Ahuja M, Chiang YM, Chang SL, et al. Illuminating the diversity of aromatic polyketide synthases in Aspergillus nidulans. J Am Chem Soc. 2012;134(19):8212-8221. https://doi.org/10.1021/ja3016395
  34. Araki Y, Awakawa T, Matsuzaki M, et al. Complete biosynthetic pathways of ascofuranone and ascochlorin in Acremonium egyptiacum. Proc Natl Acad Sci U S A. 2019;116(17):8269-8274. https://doi.org/10.1073/pnas.1819254116
  35. Kaneko A, Morishita Y, Tsukada K, et al. Postgenomic approach based discovery of alkylresorcinols from a cricket-associated fungus, Penicillium soppi. Org Biomol Chem. 2019;17(21):5239-5243. https://doi.org/10.1039/C9OB00807A
  36. Zabala AO, Chooi YH, Choi MS, et al. Fungal polyketide synthase product chain-length control by partnering thiohydrolase. ACS Chem Biol. 2014;9(7):1576-1586. https://doi.org/10.1021/cb500284t
  37. Nguyen HT, Ketha A, Kukavica B, et al. Anti-inflammatory potential of lichens and its substances. In: Vinay Bharadwaj T, editor. Inflammatory bowel disease. Reno (NV): MedDocs Publishers; 2021. p. 1-9.
  38. Wang Y, Geng C, Yuan X, et al. Identification of a putative polyketide synthase gene involved in usnic acid biosynthesis in the lichen Nephromopsis pallescens. PLoS One. 2018;13(7):e0199110.
  39. Kroken S, Glass NL, Taylor JW, et al. Phylogenomic analysis of type I polyketide synthase genes in pathogenic and saprobic ascomycetes. Proc Natl Acad Sci U S A. 2003;100(26):15670-15675. https://doi.org/10.1073/pnas.2532165100
  40. Lim FY, Hou Y, Chen Y, et al. Genome-based cluster deletion reveals an endocrocin biosynthetic pathway in Aspergillus fumigatus. Appl Environ Microbiol. 2012;78(12):4117-4125.
  41. Pizarro D, Divakar PK, Grewe F, et al. Genome-wide analysis of biosynthetic gene cluster reveals correlated gene loss with absence of usnic acid in lichen-forming fungi. Genome Biol Evol. 2020;12(10):1858-1868. https://doi.org/10.1093/gbe/evaa189
  42. Ugai T, Minami A, Fujii R, et al. Heterologous expression of highly reducing polyketide synthase involved in betaenone biosynthesis. Chem Commun. 2015;51(10):1878-1881. https://doi.org/10.1039/C4CC09512J
  43. Gerasimova JV, Beck A, Werth S, et al. High diversity of type I polyketide genes in Bacidia rubella as revealed by the comparative analysis of 23 lichen genomes. J Fungi. 2022;8(5):449.
  44. Punya J, Swangmaneecharern P, Pinsupa S, et al. Phylogeny of type I polyketide synthases (PKSs) in fungal entomopathogens and expression analysis of PKS genes in Beauveria bassiana BCC 2660. Fungal Biol. 2015;119(6):538-550. https://doi.org/10.1016/j.funbio.2015.02.005
  45. Gallo A, Ferrara M, Perrone G. Phylogenetic study of polyketide synthases and nonribosomal peptide synthetases involved in the biosynthesis of mycotoxins. Toxins. 2013;5(4):717-742. https://doi.org/10.3390/toxins5040717