• Title/Summary/Keyword: Korean Pine stands

Search Result 139, Processing Time 0.089 seconds

Stand Structure of the Natural Broadleaved-Korean Pine Forests in Northeast China

  • Li, Fengri;Ma, Zhihai
    • Journal of Korean Society of Forest Science
    • /
    • v.94 no.5 s.162
    • /
    • pp.321-329
    • /
    • 2005
  • Based on the data representing four typical Korean pine forest types, the age structure, DBH distribution, species composition, and forking rule were systemically analyzed for old-growth Korean pine forest in Liangshui Nature Reserve, northeast China. The age structure of Korean pine trees was strongly uneven-aged with one dominated peak following normal distribution, and age of trees varied from 100 to 180 years within a stand. The DBH and height differences in same age class (20 years) varied from 28 cm~64 cm and 5 to 20 m, respectively. Many conifer and hard wood species, such as spruce, fir, costata birch, basswood, oak, and elm, were mixed with dominated trees of Korean pine. The canopy of the old-growth Korean pine forest can be divided into two layers, and differences of mean age and height between Layer I and Layer II were ranged 80~150 years and 7~13 m, respectively. The Weibull function was used to model the diameter distribution and performed well to describe size-class distribution either with a single peak in over-story canopy and inverse J-shape in under-story canopy for old-growth Korean pine stands. The forking height of Korean pine trees ranged from 16m to 24 m (mean 19.4 m) and tree age about 120 to 160 years old. The results will provide a scientific basis to protect and recover the ecosystem of natural old-growth Korean pine and also provide the model in management of Korean pine plantation.

Changes of Site Index and Production of Black Pine ($\emph{Pinus thunbergii}$ Parl.) Stand from Coast to Inland (곰솔림의 지위지수와 생산의 해안으로부터 내륙으로의 변화)

  • Kim, Jeong-Un;Yang-Jai Yim;Bong-Seop Kil
    • The Korean Journal of Ecology
    • /
    • v.9 no.3
    • /
    • pp.123-133
    • /
    • 1986
  • Black pine, Pinus thumbergii, stands in southwestern Korea were investigated. The black pine forest with 90 percent or more in the relative basal area (black pine basal area/whole pine basal area, RBA) was found in the coastal area. However, from the coastal area to the inland. RBA of the pine was decreased because the competition with red pine (P. densiflora) and/or pitch pine (P. rigida). In 25 year-old plants at the coastal areas, the wood volume of black pine is twofold or more than that of red pine, fourfold or more than that of pitch pine. The optimum rotation period for the maximum yield of black pine is estimated to take 35 years, based on the site index calculated. The optimal temperature for the pine plantation in Korean peninula should be the area in over 105。C.month in warmth index. And the soil conditions with 50% of RBA or over were 0.025%~0.151% of soil salinity, 3~6% of organic matter content, pH value 4.50~5.04, 8.5~11.0 me/100g of C.E.C..

  • PDF

A Study on Light Condition between Pinus densiflora and Quercus variabilis Natural Mixed Forest Stands by Using the Hemispherical Photo Method (수관사진법을 이용한 소나무-굴참나무 천연림에 있어서의 광 조건 연구)

  • Chung Dong-Jun;Kim Young-Chai
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.1 no.2
    • /
    • pp.127-134
    • /
    • 1999
  • This study was performed to obtain the basic data to present rational silvicultural tending plan. It makes these widely distributed pine-oak mixed stand and each of pure stand in middle province on object of this study and do comparative analysis of light condition about stand parameter and natural regeneration according to each slope(north, west and south) conditions of location in central part of South Korea. Sample plots for pine-oak mixed stand and pine and oak pure stand were established on each of southern, northern and western slopes based upon site and growth conditions of the slope. Sample plot was a circle of 0.05ha with a diameter of 25.24 m. A sample plot has between 30 and 40 tree in it. Total 23 sample plots were established; 9 pure pine stands, 8 pine-oak mixed stands. and 6 pure oak stands across lower, middle, upper parts of slopes. Relative light intensity within a stand was' measured by crown- photo(fish-eye lens; 180$^{\circ}$) system through fish-eye lens and by comparing each plot with the denuded through PAR-sensor. The crown closure ratio of pure pine stand (75%) shows much lower than that of mixed stand (90.9%) and pure oak stand (93%). The relative light intensity within a stand showed an opposite result. The crown closure of mixed stands tended to become gradually low as the slope moves from the north to the south, but the relative light Intensity within the stand tended to rise. By analyzing the relationship between the relative light intensity within a stand and stand parameter, light intensity within a stand tended to decrease as the diameter and N/ha increase. Number of oak seedlings and light intensity within a stand is in a straight-line regression relation. In particular, the number of oak seedlings was the highest in mixed stands on the southern slope. But no single pine seedling was found. The unfavorable conditions of l0cm thick litter layer and low relative light intensity in a stand (ranging between 4% and 8%) is considered to prevent pine seeds from germinating.

  • PDF

Detection of the Damaged Trees by Pine Wilt Disease Using IKONOS Image

  • Lee, S.H.;Cho, H.K.;Kim, J.B.;Jo, M.H.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.709-711
    • /
    • 2003
  • The purpose of this study is to detect the damaged red pine trees by pine wilt disease using high resolution satellite image of IKONOS Geo. IKONOS images are segmented with eCognition image processing software. A segment based maximum likelihood classification was performed to delineate the pine stand. The pine stands are regarded as a potential damage area. In order to develop a methodology to detect the location of damaged trees from the high resolution satellite image, black and white aerial photographs were used as a simulated image. The developed method based on filtering technique. A local maximum filter was adapted to detect the location of individual tree. This report presents a part of the first year results of an ongoing project.

  • PDF

A Study on the Growth and Environments of Panax ginseng in the Different Forest Stands (I) (임상별 임간인삼의 생육과 최적환경에 관한 연구(I))

  • 우수영;이동섭
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.4 no.2
    • /
    • pp.65-71
    • /
    • 2002
  • The best environments such as crown density, temperature, light intensity and humidity have to be identified because these factors are strongly related to the growth and several physiological characteristics. The purposes of this study are \circled1 to collect basic data fer growth, \circled2 to identify the best growth environments. to achieve these purposes, oak, pine and mixed forest stands have been selected in this study. forest ginseng seeds were sown in these forest four years ago. Several environmental and growth factors have been surveyed. In general, mean tree age, DBH and average height are 20-25 years old, 14-17 cm and 7-9 m, respectively. The growths of forest ginseng grown in oak stand are better than those of pine and mixed stands.

Temporal Distribution of Ectomycorrhizal Fungi and Pollen as a Seasonal Nutrient Source in a Boreal Forest, Canada

  • Lee, Eun-Ju
    • The Korean Journal of Ecology
    • /
    • v.23 no.2
    • /
    • pp.169-173
    • /
    • 2000
  • Seasonal distribution of ectomycorrhizal associations in various types of forest in a boreal forest in Manitoba. Canada was investigated. Alsohe relationship between ectomycorrhizal growth and pine pollen nutrients was examined. In four different forest stands, ectomycorrhizas tended to be lower in the spring than in the summer and fall samples. In addition. a mature jack pine (Pinus banksiana) stand showed higher mycorrhizal activities than a young jack pine stand. Growth of Suillus brevipes hyphae wa ts stimulated by additions of pollen representing mean pollen deposition in Mistik Creek study area after 30 and 70 days of growth with dextrose availability. This result suggests that the peak ectomycorrhizal activity is followed by pollen deposition in the study region and therefore, addition of pine and spruce pollen in early or middle of June in the boreal forest can be an important seasonal nutrient source for ectomycorrhizal growth.

  • PDF

Stand Density Management Studies on Pine Stands in Korea (I) - The Simple Logistic Growth Curve and Its Application to Pine Stands - (소나무림(林)의 밀도관리(密度管理)에 관(關)한 연구(硏究)(I) - 단순(單純) logistic 곡선(曲線)과 소나무림(林)에 대한 그의 적용(適用) -)

  • Kwon, O Bok;Lee, Heung Kyun;Woo, Chong Chun
    • Journal of Korean Society of Forest Science
    • /
    • v.57 no.1
    • /
    • pp.1-7
    • /
    • 1982
  • The simple logistic growth model on the logistic curve, being originally a kind of population growth curve has also been sometimes utilized to describe growth curves in herbaceous plants such as duckweed and sun-flowers. It has already been recognized that the agreement between the theoretical calculations and the empirical observations is quite satisfactory form a practical point of view. It remains, however, still doubtful whether the logistic curve could be applied to the growth or ordinary woody plants which is quite different in its character from that of herbaceous plants. In this study, the simple logistic model, being a basic tool of stand density management, is applied to yield data from pine stands in order to test the adequacy of the model An attempt of testing the significance of the fit is made by applying the Chi-square test.

  • PDF

Litter Production and Decomposition in the Querces acutissima and Pinus rigida Forests (상수리나무림과 리기다소나무림의 낙엽 생산과 분해)

  • 문형태;주환택
    • The Korean Journal of Ecology
    • /
    • v.17 no.3
    • /
    • pp.345-353
    • /
    • 1994
  • Litter production and decomposition were investigated for 2 years in the oak, Quercus acutissima, and the pitch pine, Pinus rigida, stands in the vicinity of Kongju, Chungnam Province. Litter production was measured with litter trap at monthly basis. Litterbag method was used for the measurement of litter decomposition. Litter producion continued throughout the year, but showed a peak in autumn. Second peak in May or June was caused by falling of bud scales and reproductive organs. Average litter production in the oak and the pitch pine stands were $567.1g{\cdot}m^{-2}{\cdot}yr^{-1}\;and\;653.2g{\cdot}m^{-2}{\cdot}yr^{-1}$, respectively. Litter production in this study area were higher than those in other reports. Nutrient concentrations in litter were the highest in summer when the least litter production occurred, and the lowest in autumn when the greatest litter production occurred, except for calcium in the oak stand. Nutrient concentrations of the oak litter were higher than those in the pitch pine litter. After 1 year, % remaining mass of oak and pitch pine litter was 43.6% and 58%, respectively. After 21 months elapsed, % remaining mass of oak and pitch pine litter was 22.2% and 33.2%, respectively.

  • PDF

Allometric Equations and Biomass Expansion Factors in an Age-sequence of Black Pine (Pinus thunbergii) Stands (곰솔임분의 임분연령별 상대생장식 및 현존량 확장계수)

  • Kim, Choonsig;Lee, Kwang-Soo;Son, Young-Mo;Cho, Hyun-Seo
    • Journal of Korean Society of Forest Science
    • /
    • v.102 no.4
    • /
    • pp.543-549
    • /
    • 2013
  • This study was conducted to evaluate age-specific and generalized allometric equations and biomass expansion factors (BEFs) for each tree component across three age-sequence stands (35-year-old, 51-year-old, 62-year-old) of black pine (Pinus thunbergii Parl.) in Jinju, located in the western part of Gyeongnam province, Korea. Biomass in each tree component, i.e. foliage, branch, and stem, was quantified by destructive tree harvesting. Allometric regression equations were significant (P<0.05) with diameter at breast height (DBH) or combination of DBH and height ($DBH^2H$) accounting for 55-98% of the variation (as indicated by coefficients of determination, $R^2$) in aboveground biomass except for foliage biomass of the 62-year-old stand. Generalized allometric equations can be used to estimate the biomass of black pine stands because the slopes of age-specific equations over 35-year-old stands were not significantly different by the age-sequence. The stem density and biomass expansion factor (BEFs) were not significantly different (P>0.05) from different stand ages and ranged from 0.45 to $0.51gcm^{-3}$, and from 1.32 to 1.38, respectively. The results indicate that allometric equations, stem density and aboveground BEFs in the matured black pine over 35-year-old are little influenced by different stand ages.

Aboveground Biomass Estimation of Pinus densiflora Stands in the Western Gyeongnam Regions (경남 서부지역 소나무임분의 지상부 Biomass에 관한 연구)

  • Jeong, Jae-Yeob;Cho, Hyun-Jong;Seo, Jeong-Hyun;Kim, Rae-Hyun;Son, Young-Mo;Lee, Kyeong-Hak;Kim, Choon-Sig
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.1
    • /
    • pp.62-67
    • /
    • 2010
  • This study was carried out to develop local allometric biomass regression equations and to estimate aboveground biomass of red pine (Pinus densiflora S. et Z.) stands among three regions (Hadong, Hamyang, Sancheong) from the western regions of Gyeongnam province. We selected three natural red pine stands with similar stand ages (about 40-year-old) from each region. The allometric regression equations were significant in all tree components (P<0.05) and the determination of coefficient ($R^2$) ranged 0.87 from 0.99. There was a significant difference (P<0.05) in the biomass of tree components among three regions. The biomass was 173.3 Mg/ha in Hadong, 131.0 Mg/ha in Sancheong, and 66.5 Mg/ha in Hamyang. The proportion of biomass was 70.4-77.1% in stemwood, 10.9-15.2% in branch, 8.9-10.4% in stembark, and 3.1-4.4% in needle. The results indicated that red pine stands in the western Gyeongnam regions showed the significant difference of aboveground biomass which was attributed to site quality and stand density.