DOI QR코드

DOI QR Code

Allometric Equations and Biomass Expansion Factors in an Age-sequence of Black Pine (Pinus thunbergii) Stands

곰솔임분의 임분연령별 상대생장식 및 현존량 확장계수

  • Kim, Choonsig (Department of Forest Resources, Gyeongnam National University of Science and Technology) ;
  • Lee, Kwang-Soo (Southern Forest Resource Research Center, Korea Forest Research Institute) ;
  • Son, Young-Mo (Center of Forest and Climate Change, Korea Forest Research Institute) ;
  • Cho, Hyun-Seo (Department of Forest Resources, Gyeongnam National University of Science and Technology)
  • 김춘식 (경남과학기술대학교 산림자원학과) ;
  • 이광수 (국립산림과학원 남부산림자원연구소) ;
  • 손영모 (국립산림과학원 기후변화연구센터) ;
  • 조현서 (경남과학기술대학교 산림자원학과)
  • Received : 2013.07.17
  • Accepted : 2013.10.21
  • Published : 2013.12.31

Abstract

This study was conducted to evaluate age-specific and generalized allometric equations and biomass expansion factors (BEFs) for each tree component across three age-sequence stands (35-year-old, 51-year-old, 62-year-old) of black pine (Pinus thunbergii Parl.) in Jinju, located in the western part of Gyeongnam province, Korea. Biomass in each tree component, i.e. foliage, branch, and stem, was quantified by destructive tree harvesting. Allometric regression equations were significant (P<0.05) with diameter at breast height (DBH) or combination of DBH and height ($DBH^2H$) accounting for 55-98% of the variation (as indicated by coefficients of determination, $R^2$) in aboveground biomass except for foliage biomass of the 62-year-old stand. Generalized allometric equations can be used to estimate the biomass of black pine stands because the slopes of age-specific equations over 35-year-old stands were not significantly different by the age-sequence. The stem density and biomass expansion factor (BEFs) were not significantly different (P>0.05) from different stand ages and ranged from 0.45 to $0.51gcm^{-3}$, and from 1.32 to 1.38, respectively. The results indicate that allometric equations, stem density and aboveground BEFs in the matured black pine over 35-year-old are little influenced by different stand ages.

경상남도 진주지역의 유사한 입지환경에서 생육한 평균 임령 35년생, 51년생, 62년생 곰솔임분을 대상으로 각 연령별 8본의 표본목을 벌채하여 바이오매스 추정을 위한 상대생장식과 줄기밀도 및 현존량 확장계수를 개발하였다. 흉고직경을 독립변수로 하고 각 부위별 건중량을 종속변수로 하는 상대생장식은 62년생 임분의 잎 바이오매스를 제외하고 유의성이 인정되었으며(P<0.05), 결정계수($R^2$)의 값도 0.55-0.98 정도로 나타났다. 또한 각 임분 연령에 대한 상대생장식(Age-specific allometric equations)의 회귀계수(slope)에 유의적인 차가 없어(P>0.05), 35년 이상 곰솔임분의 경우 임분 연령에 관계없이 일괄 상대생장식(Generalized allometric equations)을 이용하여 바이오매스 추정이 가능한 것으로 나타났다. 줄기밀도와 현존량 확장계수도 임분 연령 간 유의적인 차이가 없었으며 줄기밀도는 $0.45-0.51gcm^{-3}$, 현존량 확장계수는 1.32-1.38 정도의 범위에 분포하였다. 본 연구결과에 따르면 35년 이상 성숙한 곰솔임분의 바이오매스 추정을 위한 상대생장식, 줄기밀도, 현존량 확장계수는 임분 연령의 영향이 크지 않는 것으로 나타났다.

Keywords

References

  1. Fateme, F.R., Yanai, R.D., Hamburg, S.P., Vadeboncoeur, M.A., Arthur, M.A., Briggs, R.D., and Levine, C.R. 2011. Allometric equations for young northern hardwoods: the importance of age-specific equations for estimating aboveground biomass. Canadian Journal of Forest Research 41: 881-891. https://doi.org/10.1139/x10-248
  2. Fukuda, M., Iehara, T., and Matsumato, M. 2003. Carbon stock estimates for sugi and hinoki forests in Japan. Forest Ecology and Management 184: 1-16. https://doi.org/10.1016/S0378-1127(03)00146-4
  3. IPCC. 2003. Good practice guidance for land use, land-use change and forestry. IGES, Kanagawa, Japan.
  4. Jeong, J., Cho, H.J., Seo, J.H., Kim, R.H., Son, Y.M., Lee, K.H., and Kim, C. 2010. Aboveground biomass estimation of Pinus densiflora stands in the western Gyeongnam regions. Journal of Korean Forestry Society 99: 62-67.
  5. Kim, C. and Jeong, J. 2001. Change of aboveground carbon storage in a Pinus rigida stands in Gwangnung, Gyunggi-do, Korea. Journal of Korean Forestry Society 90: 774-780.
  6. Kim, C., Jeong, J., Kim, R.H., Son, Y.M., Lee, K.H., Kim, J.S., and Park, I.H. 2011. Allometric equations and biomass expansion factors of Japanese red pine on the local level. Landscape and Ecological Engineering 7: 283-289. https://doi.org/10.1007/s11355-010-0131-2
  7. Kim, H.P., Lee, H.H., and Lee, J.H. 2012. Studies on the characteristics of growth of the Pinus thunbergii planted in a costal sand zone. Journal of Korean Forestry Society 101: 656-662.
  8. Kim, J.U. Yim, Y.J., and Kim, B.S. 1986. Changes of site index and production of black pine (Pinus thunbergii Parl.) stand from coast to inland. Korean Journal of Ecology 9: 123-133.
  9. Kim, T.W., Lee, K.J., and Park, I.H. 1985. Effect of air pollution on the primary production of Pinus thunbergii forest. Journal of Korean Forestry Society 71: 33-39.
  10. Konopka, H. Tsukahara, H., and Netsu, A. 2000. Biomass distribution in 40-year-old trees of Japanese black pine. Journal of Forest Research 5: 163-168. https://doi.org/10.1007/BF02762396
  11. Korea Forest Research Institute. 2010. Survey Manual for Biomass and Soil Carbon. pp. 60.
  12. Lehtonen, A., Makipaa, R., Heikkinen, J., Sievanen, R., and Liski, J. 2004. Biomass expansion factors (BEFs) for Scots pine, Norway spruce and birch according to stand age for boreal forests. Forest Ecology and Management 188: 211-224. https://doi.org/10.1016/j.foreco.2003.07.008
  13. Milliken, G.A. and Johnson, D.E. 2002. Analysis of Messy Data. Volume III: Analysis of Covariance. Chapman & Hall/CRC.
  14. Montagu, K.D., Duttmer, K., Barton, C.V.M., and Cowie, A.L. 2005. Developing general allometric relationships for regional estimates of carbon sequestration - an example using Eucalyptus pilularis from seven contrasting sites. Forest Ecology and Management 204: 113-127.
  15. Noh, N.J., Son, Y., Kim, J.S., Kim, R.H., Seo, K.Y., Seo, K.W., Koo, J.W., Kyung, J.H., Park, I.H., Lee, Y.J., Son, Y.M., and Lee, K.H. 2006. A study on estimation, stem density and biomass expansion factor for stand age classes of Japanese larch (Larix leptolepis) stands in Gapyeong area. Journal of Korean Forest Energy 25: 1-8.
  16. Park, I.H., Park, M.S., Lee, K.H., Son, Y.M., Seo, J.H., Son, Y., and Lee, Y.J. 2005. Biomass expansion factors for Pinus densiflora in relation to ecotype and stand age. Journal of Korean Forestry Society 94: 441-445.
  17. Peichl, M. and Arain, M.A. 2007. Allometry and partitioning of above- and belowground tree biomass in an agesequence of white pine forests. Forest Ecology and Management 253: 68-80. https://doi.org/10.1016/j.foreco.2007.07.003
  18. SAS Institute Inc. 2003. SAS/STAT Statistical Software. Version 9.1 SAS publishing Cary, NC.
  19. Shinozaki, K., Yoda, K., Hozumi, K. and Kira, T. 1964. A quantitative analysis of plant form: The pipe model theory. II. Further evidence of the theory and its application in forest ecology. Japanese Journal of Ecology 14: 133-139.
  20. Son, Y.M. and Chung, Y.G. 1994. The effects of the topographical, soil and meterological factors on the tree height growth in the Pinus thunbergii stands. Journal of Korean Forestry Society 83: 380-390.
  21. Son, Y., Hwang, J.W., Kim, Z.S., Lee, W.K., and Kim, J.S. 2001. Allometry and biomass of Korean pine (Pinus koraiensis) in central Korea. Bioresource Technology 78: 251-255. https://doi.org/10.1016/S0960-8524(01)00012-8
  22. Teobaldelli, M., Somogyi, Z., Migliavacca, M., and Usoltsev, V. 2009. Generalized functions of biomass expansion factors for conifers and broadleaved by stand age, growing stock and site index. Forest Ecology and Management 257: 1004-1013. https://doi.org/10.1016/j.foreco.2008.11.002
  23. Tobin, B. and Nieuwenhuis, M. 2007. Biomass expansion factors for Sitka spruce (Picea sitchensis (Bong.) Carr.) in Ireland. European Journal of Forest Research 126: 189-196. https://doi.org/10.1007/s10342-005-0105-3
  24. Vanninen, P., Ylitalo, H., Sievaenen, R., and Makela, A. 1996. Effects of age and site quality on the distribution of biomass in Scot pine (Pinus sylvestris L.) Trees Structure and Function 10: 231-238.
  25. Whittaker, R.H., Bormann, F.H., Likens, G.E., and Siccama, T.G. 1994. The Hubbard Brook ecosystem study: forest biomass and production. Ecological Monograph 44: 233-252.

Cited by

  1. Development of Allometric Equations for V Age-class Pinus koraiensis in Mt. Taehwa Plantation, Gyeonggi-do vol.16, pp.1, 2014, https://doi.org/10.5532/KJAFM.2014.16.1.29
  2. Biomass Expansion Factors and Allometric Equations in Age Class IV of Pinus thunbergii Coastal Disaster Prevention Forest in Seocheon, Chungnam vol.14, pp.6, 2014, https://doi.org/10.9798/KOSHAM.2014.14.6.413
  3. Biomass and Nutrient Stocks of Tree Components by Stand Density in a Quercus glauca Plantation vol.105, pp.3, 2016, https://doi.org/10.14578/jkfs.2016.105.3.294
  4. Allometric Equations and Biomass Expansion Factors by Stand Density in Cryptomeria japonica Plantations vol.103, pp.2, 2014, https://doi.org/10.14578/jkfs.2014.103.2.175
  5. Estimation of Forest Carbon Stocks for National Greenhouse Gas Inventory Reporting in South Korea vol.9, pp.10, 2018, https://doi.org/10.3390/f9100625
  6. 소나무재선충병 피해지에 식재된 편백의 낙엽·낙지에 의한 탄소 및 질소 유입량 vol.110, pp.1, 2013, https://doi.org/10.14578/jkfs.2021.110.1.43