• Title/Summary/Keyword: Korean Civil Code

Search Result 412, Processing Time 0.027 seconds

Numerical Modeling of Thermoshearing in Critically Stressed Rough Rock Fracture: DECOVALEX-2023 Task G (임계응력 하 거친 암석 균열의 Thermoshearing 수치모델링: 국제공동연구 DECOVALEX-2023 Task G)

  • Jung-Wook Park;Chan-Hee Park;Li Zhuang;Jeoung Seok Yoon;Changlun Sun;Changsoo Lee
    • Tunnel and Underground Space
    • /
    • v.33 no.3
    • /
    • pp.189-207
    • /
    • 2023
  • In the present study, the thermoshearing experiment on a rough rock fracture were modeled using a three-dimensional grain-based distinct element model (GBDEM). The experiment was conducted by the Korea Institute of Construction Technology to investigate the progressive shear failure of fracture under the influence of thermal stress in a critical stress state. The numerical model employs an assembly of multiple polyhedral grains and their interfaces to represent the rock sample, and calculates the coupled thermo-mechanical behavior of the grains (blocks) and the interfaces (contacts) using 3DEC, a DEM code. The primary focus was on simulating the temperature evolution, generation of thermal stress, and shear and normal displacements of the fracture. Two fracture models, namely the mated fracture model and the unmated fracture model, were constructed based on the degree of surface matedness, and their respective behaviors were compared and analyzed. By leveraging the advantage of the DEM, the contact area between the fracture surfaces was continuously monitored during the simulation, enabling an examination of its influence on shear behavior. The numerical results demonstrated distinct differences depending on the degree of the surface matedness at the initial stage. In the mated fracture model, where the surfaces were in almost full contact, the characteristic stages of peak stress and residual stress commonly observed in shear behavior of natural rock joints were reasonably replicated, despite exhibiting discrepancies with the experimental results. The analysis of contact area variation over time confirmed that our numerical model effectively simulated the abrupt normal dilation and shear slip, stress softening phenomenon, and transition to the residual state that occur during the peak stress stage. The unmated fracture model, which closely resembled the experimental specimen, showed qualitative agreement with the experimental observations, including heat transfer characteristics, the progressive shear failure process induced by heating, and the increase in thermal stress. However, there were some mismatches between the numerical and experimental results regarding the onset of fracture slip and the magnitudes of fracture stress and displacement. This research was conducted as part of DECOVALEX-2023 Task G, and we expect the numerical model to be enhanced through continued collaboration with other research teams and validated in further studies.

Three-Dimensional High-Frequency Electromagnetic Modeling Using Vector Finite Elements (벡터 유한 요소를 이용한 고주파 3차원 전자탐사 모델링)

  • Son Jeong-Sul;Song Yoonho;Chung Seung-Hwan;Suh Jung Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.4
    • /
    • pp.280-290
    • /
    • 2002
  • Three-dimensional (3-D) electromagnetic (EM) modeling algorithm has been developed using finite element method (FEM) to acquire more efficient interpretation techniques of EM data. When FEM based on nodal elements is applied to EM problem, spurious solutions, so called 'vector parasite', are occurred due to the discontinuity of normal electric fields and may lead the completely erroneous results. Among the methods curing the spurious problem, this study adopts vector element of which basis function has the amplitude and direction. To reduce computational cost and required core memory, complex bi-conjugate gradient (CBCG) method is applied to solving complex symmetric matrix of FEM and point Jacobi method is used to accelerate convergence rate. To verify the developed 3-D EM modeling algorithm, its electric and magnetic field for a layered-earth model are compared with those of layered-earth solution. As we expected, the vector based FEM developed in this study does not cause ny vector parasite problem, while conventional nodal based FEM causes lots of errors due to the discontinuity of field variables. For testing the applicability to high frequencies 100 MHz is used as an operating frequency for the layer structure. Modeled fields calculated from developed code are also well matched with the layered-earth ones for a model with dielectric anomaly as well as conductive anomaly. In a vertical electric dipole source case, however, the discontinuity of field variables causes the conventional nodal based FEM to include a lot of errors due to the vector parasite. Even for the case, the vector based FEM gave almost the same results as the layered-earth solution. The magnetic fields induced by a dielectric anomaly at high frequencies show unique behaviors different from those by a conductive anomaly. Since our 3-D EM modeling code can reflect the effect from a dielectric anomaly as well as a conductive anomaly, it may be a groundwork not only to apply high frequency EM method to the field survey but also to analyze the fold data obtained by high frequency EM method.

A Consideration of Perception on Enforcement of Serious Accident Punishment Act(SAPA) among the Workers in the Nuclear Medicine Department (중대재해처벌법 시행에 따른 핵의학 종사자의 인식 고찰)

  • Lee, Joo-Young
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.4
    • /
    • pp.477-490
    • /
    • 2022
  • Serious Accident Punishment Act(SAPA) went into effect as of Jan. 27, 2022. The subject of study was the worker of the nuclear medicine department and the investigation was aimed at identifying the present situation of their understanding on the issue in the here and now, which can be utilized as basic research for further study. The survey was conducted on 51 people of the worker in the nuclear medicine department. The general factors were classified by their gender, the scale of the hospitals, the period of career, and the detailed occupational categories. The conclusion was drawn, including 1 missing data in gender and 2 in the type of occupation. The targeted hospitals were tertiary hospital, university hospital, and general hospital which have nuclear medicine department in. The period of subjects' career was categorized by less than 3 years, 3 to 5 years, 5 to 10 years, and more than 10 years. The specific occupation was classified by in-vivo radiological technologist, radiation safety manager and others. The amount of pressure that the job entails was highest in the category of general hospital, the period of 3 to 5 years of job experience, and radiation safety manager each. The system of the code was well constructed in the category of general hospital, the period of less than 3-year career, and radiation safety manager, as they responded. The blood transmissible disease had the largest number of outbreak of accidents related to the serious industrial accident. In addition, the radiopharmaceutical dosing error had the highest number of outbreak of accidents related to the serious civil accident. Therefore, we need to improve SAPA, facility inspection, security of budget, security of professional manpower. It will help the stable use of radiation and ensure patient safety.

A Study on the Static Behaviors of Steel Deck Plates of Skew Bridges (사교(斜橋)의 강상판(鋼床板)의 정적거동(靜的擧動)에 대한 연구(研究))

  • Yang, Chang Hyun;Oh, Gi Taek
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.815-826
    • /
    • 1994
  • Skew bridges are found frequently in new bridge construction due to geographical conditions when new constructing bridges are put across the existing highways, railroads or rivers. This study is to investigate the static behaviors of the steel deck plates of skew bridges which are increasingly used in bridges due to outstanding quality of structural steels, development of welding techniques, in order to reduce dead loads and period of constructions. The static behaviours of steel deck plates are analyzed using general purpose FE code SAP90 by modeling the skewed deck plates with rigorous finite elements, as the skew angles vary. The results of finite element analysis for the behaviors of steel deck plates and concrete slabs in acute, obtuse corners and center of decks are compared and discussed as the skew angles vary from $90^{\circ}$ to $30^{\circ}$. Two types of decks are treated, as isotropic plates and orthotropic plates, respectively. From the results of finite element analysis, it is found that more moments, reactions, and deflections occur at the obtuse corners than at the center of skewed decks regardless of isotropy or orthotropy. Especially, in case of the skewed deck plates with skew angles less than 45 degrees, significantly large discrepancies for the values of those internal forces are shown between the skewed and right deck plates. This study estimates the characteristics of deck behaviors according to skew angles, and proposes limitations of skew angles and the ciritical regions of decks.

  • PDF

Reliability Based Stability Analysis and Design Criteria for Reinforced Concrete Retaining Wall (신뢰성(信賴性) 이론(理論)에 의한 R.C.옹벽(擁壁)의 안정해석(安定解析) 및 설계규준(設計規準))

  • Cho, Tae Song;Cho, Hyo Nam;Chun, Chai Myung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.3 no.3
    • /
    • pp.71-86
    • /
    • 1983
  • Current R.C. retaining wall design is bared on WSD, but the reliability based design method is more rational than the WSD. For this reason, this study proposes a reliability based design criteria for the cantilever retaining wall, which is most common type of retaining wall, and also proposes the theoretical bases of nominal safety factors of stability analysis by introducing the reliability theory. The limit state equations of stability analysis and design of each part of cantilever retaining wall are derived and the uncertainty measuring algorithms of each equation are also derived by MFOSM using Coulomb's coefficient of the active earth pressure and Hansen's bearing capacity formula. The levels of uncertainties corresponding to these algorithms are proposed appropriate values considering our actuality. The target reliability indices (overturning: ${\beta}_0$=4.0, sliding: ${\beta}_0$=3.5, bearing capacity: [${\beta}_0$=3.0, design for flexure: [${\beta}_0$=3.0, design for shear: ${\beta}_0$=3.2) are selected as optimal values considering our practice based on the calibration with the current R.C. retaining wall design safety provisions. Load and resistance factors are measured by using the proposed uncertainties and the selected target reliability indices. Furthermore, a set of nominal safety factors, allowable stresses, and allowable shear stresses are proposed for the current WSD design provisions. It may be asserted that the proposed LRFD reliability based design criteria for the R.C. retaining wall may have to be incorporated into the current R.C. design codes as a design provision corresponding to the USD provisions of the current R.C. design code.

  • PDF

Optimum Design of Two Hinged Steel Arches with I Sectional Type (SUMT법(法)에 의(依)한 2골절(滑節) I형(形) 강재(鋼材) 아치의 최적설계(最適設計))

  • Jung, Young Chae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.3
    • /
    • pp.65-79
    • /
    • 1992
  • This study is concerned with the optimal design of two hinged steel arches with I cross sectional type and aimed at the exact analysis of the arches and the safe and economic design of structure. The analyzing method of arches which introduces the finite difference method considering the displacements of structure in analyzing process is used to eliminate the error of analysis and to determine the sectional force of structure. The optimizing problems of arches formulate with the objective functions and the constraints which take the sectional dimensions(B, D, $t_f$, $t_w$) as the design variables. The object functions are formulated as the total weight of arch and the constraints are derived by using the criteria with respect to the working stress, the minimum dimension of flange and web based on the part of steel bridge in the Korea standard code of road bridge and including the economic depth constraint of the I sectional type, the upper limit dimension of the depth of web and the lower limit dimension of the breadth of flange. The SUMT method using the modified Newton Raphson direction method is introduced to solve the formulated nonlinear programming problems which developed in this study and tested out throught the numerical examples. The developed optimal design programming of arch is tested out and examined throught the numerical examples for the various arches. And their results are compared and analyzed to examine the possibility of optimization, the applicablity, the convergency of this algorithm and with the results of numerical examples using the reference(30). The correlative equations between the optimal sectional areas and inertia moments are introduced from the various numerical optimal design results in this study.

  • PDF

Experimental Study on Structural Behavior of Precast PSC Curved Girder Bridge (프리캐스트 PSC 곡선 거더교의 구조거동에 대한 실험적 연구)

  • Kim, Sung Jae;Kim, Sung Bae;Uhm, Ki Ha;Kim, Jang Ho Jay
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.6
    • /
    • pp.1731-1741
    • /
    • 2014
  • Recently, many overpasses, highway, and advanced transit systems have been constructed to distribute the traffic congestion, thus small size of curved bridges with small curvature such as ramp structures have been increasing. Many of early curved bridges had been constructed by using straight beams with curved slabs, but curved steel beams have replaced them due to the cost, aesthetic and the advantage in building the section form and manipulating the curvature of beams, thereby large portion of curved bridges were applied with steel box girders. However, steel box girder bridges needs comparatively high initial costs and continuous maintenance such as repainting, which is the one of the reason for increasing the cost. Moreover, I-type steel plate girder which is being studied by many researchers recently, seem to have problems in stability due to the low torsional stiffness, resulting from the section characteristics with thin plate used for web and open section forms. Therefore, in recent studies, researchers have proposed curved precast PSC girders with low cost and could secured safety which could replace the curved steel girder type bridges. Hence, this study developed a Smart Mold system to manufacture efficient curved precast PSC girders. And by using this mold system a 40 m 2-girder bridge was constructed for a static flexural test, to evaluate the safety and performance under ultimate load. At the manufacturing stage, each single girder showed problems in the stability due to the torsional moment, but after the girders were connected by cross beams and decks, the bridge successfully distributed the stress, thereby the stability was confirmed. The static loading test results show that the initial crack was observed at 1,400 kN when the design load was 450 kN, and the load at the allowable deflection by code was 1,800 kN, which shows that the safety and usability of the curved precast PSC bridge manufactured by Smart Mold system is secured.

Measures of International Standardization in Korean Landscape Drawing Practice (한국 조경제도의 국제표준화 방안)

  • Kim, Min-Soo
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.37 no.4
    • /
    • pp.52-63
    • /
    • 2009
  • WTO/TBT aims to reduce impediments to trade resulting from differences between national regulations and standards. Where international standards exist or their completion is imminent, the Code of Good Practice says that standardizing bodies should use them, or the relevant parts of them, as a basis for any standards they develop. Drawing is a formal and precise way of communicating information about the shape, size and, features. In addition, drawing is a part of the universal language of engineering. However there are many differences between international landscape drawing standard ISO 11091 and Korean landscape drawing practice(KLDP). The result of a comparison of ISO 11091 with KLDP and suggestions for international standardization of KLDP are summarized as follows. First, Among the 33 kinds of conventions from ISO 11091, 2 similar kinds and 15 different kinds from KLDP and 16 kinds of conventions which exist only in ISO 11091 appeared-for the international standardization of KLDP, it is necessary to make an extensive alteration of KLDP. Second, Europe Unity countries accepted ISO 11091 and are using it as their national standard for landscape drawing. Even Japan has accepted ISO 11091 on their civil engineering drawings and is using it as their national standard. Therefore, we need to hasten KS standard enactment based on ISO 1091. Third, For the KS standard of construction drawings, the degree of international standardization is rising even though there are still differences from the ISO standard. Therefore, since the burden on the international standardization of KLDP is expected to be weighed, preparations should be quickly brought about in the practice fields. Fourth, Since in the landscape planting ordinances of local independent governments is the standard presented by categorizing trees into evergreen and deciduous, such parts should be modified and introduced when enacting the KS standard based on ISO 11091. Fifth, For the enactment of the KS standard for landscape drawings, a wide range of opinions should be collected by the relevant landscape organization by installing a committee, and based on its recommendation, an application for the KS standard enactment of landscape drawing should be made to the chief of Ministry of Knowledge Economy.

Review of 'Nonperformance of Obligation' and 'Culpa in Contrahendo' by Fail to Transport - A Focus on Over-booking from Air Opreator - (여객운송 불이행에 관한 민법 상 채무불이행 책임과 계약체결상의 과실책임 법리에 관한 재검토 - 항공여객운송계약에 있어 항공권 초과판매에 관한 논의를 중심으로 -)

  • Kim, Sung-Mi
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.35 no.2
    • /
    • pp.113-136
    • /
    • 2020
  • Worldwide, so-called 'over-booking' of Air Carriers is established in practice. Although not invalid, despite their current contracts, passengers can be refused boarding, which can hinder travel planning. The Korean Supreme Court ruled that an airline carrier who refused to board a passenger due to over-booking was liable for compensation under the "Nonperformance of obligation". But what the court should be thinking about is when the benefit(transport) have been disabled. Thereforeit may be considered that the impossibility of benefit (Transport) due to the rejection of boarding caused by 'Over-booking' may be not the 'subsequent impossibility', but not the 'initialimpossibility '. The legal relationship due to initial impossibility is nullity (imposibilium nulla est obligation). When benefits are initial impossibile, our civil code recognizes liability for damages in accordance with the law of "Culpa in Contrahendo", not "nonperformance of obligation". On this reason, the conclusion that the consumer will be compensated for the loss of boarding due to overbooking by the Air Carrier is the same, but there is a need to review the legal basis for the responsibility from the other side. However, it doesn't matter whether it is non-performance or Culpa in Contrahendo. Rather, the recognition of this compensation is likely to cause confusion due to unstable contractual relationships between both parties. Even for practices permitted by Air Carriers, modifications to current customary overbooking that consumers must accept unconditionally are necessary. At the same time, if Air Carriers continue to be held liable for non-performance of obligations due to overselling tickets, it can be fatal to the airline business environment that requires overbooking for stable profit margins. Therefore, it would be an appropriate measure for both Air Carriers and passengers if the Air Carrier were to be given a clearer obligation to explain (to the consumer) and, at the same time, if the explanation obligation is fulfilled, the Air Carrier would no longer be forced to take responsibility for overbooking.

Numerical Calculations of IASCC Test Worker Exposure using Process Simulations (공정 시뮬레이션을 이용한 조사유기응력부식균열 시험 작업자 피폭량의 전산 해석에 관한 연구)

  • Chang, Kyu-Ho;Kim, Hae-Woong;Kim, Chang-Kyu;Park, Kwang-Soo;Kwak, Dae-In
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.6
    • /
    • pp.803-811
    • /
    • 2021
  • In this study, the exposure amount of IASCC test worker was evaluated by applying the process simulation technology. Using DELMIA Version 5, a commercial process simulation code, IASCC test facility, hot cells, and workers were prepared, and IASCC test activities were implemented, and the cumulative exposure of workers passing through the dose-distributed space could be evaluated through user coding. In order to simulate behavior of workers, human manikins with a degree of freedom of 200 or more imitating the human musculoskeletal system were applied. In order to calculate the worker's exposure, the coordinates, start time, and retention period for each posture were extracted by accessing the sub-information of the human manikin task, and the cumulative exposure was calculated by multiplying the spatial dose value by the posture retention time. The spatial dose for the exposure evaluation was calculated using MCNP6 Version 1.0, and the calculated spatial dose was embedded into the process simulation domain. As a result of comparing and analyzing the results of exposure evaluation by process simulation and typical exposure evaluation, the annual exposure to daily test work in the regular entrance was predicted at similar levels, 0.388 mSv/year and 1.334 mSv/year, respectively. Exposure assessment was also performed on special tasks performed in areas with high spatial doses, and tasks with high exposure could be easily identified, and work improvement plans could be derived intuitively through human manikin posture and spatial dose visualization of the tasks.