• Title/Summary/Keyword: Korea integrated seismic system

Search Result 43, Processing Time 0.027 seconds

Establishment of Korea Integrated Seismic System (KISS) (통합 지진네트워크 구축)

  • 이희일;지헌철;임인섭;조창수;류용규
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.19-27
    • /
    • 2002
  • The four agencies in Korea - KMA, KIGAM, KEPRI, and KINS - have been operating their own seismic network for many years. In this study we have developed an integrated seismic system named KISS (Korea Integrated Seismic System), which is very similar to LISS (Live Internet Seismic Server) of Albuquerque Seismological Laboratory. Through KISS we could share all the earthquake data observed by those organizations in near real time. This research result will lead to provide the opportunity to use all seismic information of the earthquakes around Korean peninsula. And KISS will make us enable to do systematic researches, such as study on focal mechanisms of earthquakes around Korean peninsula, seismic design, earthquake prediction, etc. KISS will be used in developing an Early Earthquake Warning System like TriNet in Southern California, USA so as to minimize seismic hazard.

  • PDF

Seismic Fragility Evaluation of Isolated NPP Containment Structure Considering Soil-Structure Interaction Effect (지반-구조물 상호작용 효과를 고려한 지진격리시스템이 적용된 원전 격납건물의 지진 취약도 평가)

  • Eem, Seung Hyun;Jung, Hyung Jo;Kim, Min Kyu;Choi, In Kil
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.53-59
    • /
    • 2013
  • Several researches have been studied to enhance the seismic performance of nuclear power plants (NPPs) by application of seismic isolation. If a seismic base isolation system is applied to NPPs, seismic performance of nuclear power plants should be reevaluated considering the soil-structure interaction effect. The seismic fragility analysis method has been used as a quantitative seismic safety evaluation method for the NPP structures and equipment. In this study, the seismic performance of an isolated NPP is evaluated by seismic fragility curves considering the soil-structure interaction effect. The designed seismic isolation is introduced to a containment building of Shin-Kori NPP which is KSNP (Korean Standard Nuclear Power Plant), to improve its seismic performance. The seismic analysis is performed considering the soil-structure interaction effect by using the linearized model of seismic isolation with SASSI (System for Analysis of Soil-Structure Interaction) program. Finally, the seismic fragility is evaluated based on soil-isolation-structure interaction analysis results.

Integrated Management System of Seismic Observatory Information based on XML (지진 관측소 정보의 XML기반 통합 관리시스템)

  • Lim, Jin-Seub;Jung, Soon-Key
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.8
    • /
    • pp.117-125
    • /
    • 2009
  • In this paper, an integrated management system of seismic observatory information based on XML is proposed. The number of organizations which have their own seismic stations eg. KMA, KIGAM etc is increasing since 1998. Related informations such as location, installed instruments. and operational profile are essential for efficient utilization of seismic data. It's not easy to provide the uniform type of information and has limitation to announce the updated information of station rapidly through individual information management system of each organization. In this paper, we propose an integrated management system of seismic observatory information which can support to manage information of their own seismic observatory by a person in charge via Web, to integrate that in nation-wide and to provide that for users. We investigated minimum information of observatory were needed to use seismic data and the analysis result was structured by using XML. The integrated management system consists of the observatory management module. information search module, and the latest information supply module etc. By using proposed system, seismic observatory information of each organization can be managed and be supplied efficiently in nation-wide.

Seismic fragility evaluation of the base-isolated nuclear power plant piping system using the failure criterion based on stress-strain

  • Kim, Sung-Wan;Jeon, Bub-Gyu;Hahm, Dae-Gi;Kim, Min-Kyu
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.561-572
    • /
    • 2019
  • In the design criterion for the nuclear power plant piping system, the limit state of the piping against an earthquake is assumed to be plastic collapse. The failure of a common piping system, however, means the leakage caused by the cracks. Therefore, for the seismic fragility analysis of a nuclear power plant, a method capable of quantitatively expressing the failure of an actual piping system is required. In this study, it was conducted to propose a quantitative failure criterion for piping system, which is required for the seismic fragility analysis of nuclear power plants against critical accidents. The in-plane cyclic loading test was conducted to propose a quantitative failure criterion for steel pipe elbows in the nuclear power plant piping system. Nonlinear analysis was conducted using a finite element model, and the results were compared with the test results to verify the effectiveness of the finite element model. The collapse load point derived from the experiment and analysis results and the damage index based on the stress-strain relationship were defined as failure criteria, and seismic fragility analysis was conducted for the piping system of the BNL (Brookhaven National Laboratory) - NRC (Nuclear Regulatory Commission) benchmark model.

Study on Seismic Performance of Steel Structure with Precast Concrete Cladding Panel and Connector Considered as Structural Components (외부벽판과 연결부재를 구조요소로 취급한 경우 철골구조물의 내진성능에 관한 연구)

  • Byeon, Ji-Seok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.2
    • /
    • pp.127-133
    • /
    • 2008
  • The purpose of this study is to investigate the seismic performance of both exterior precast concrete cladding panels and their connections on steel frame, when these cladding systems are considered as the structural components. The degrees of their participation of lateral stiffness to the main building are evaluated in terms of different heights of the cladding panels. Considering the cladding system as an integrated building provides additional lateral stiffness, as well as a mechanism for energy dissipation and this system can be used as one of an advanced passive seismic control system. Hysteresis behaviors of connectors are modeled and integrated into a nonlinear finite element analysis program, ABAQUS. The results show that connections play the most important role in structural cladding system and they improve seismic performance of overall building response.

Seismic Fragility of Low-rise Piloti Buildings Designed According to KDS 41 17 00 (KDS 41 17 00에 따라 설계된 저층 필로티 건물의 지진 취약도)

  • Joo, Changhyeok;Kim, Taewan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.2
    • /
    • pp.49-58
    • /
    • 2022
  • The 2017 Pohang earthquake caused severe damage to low-rise piloti buildings. The damage was caused mainly by column shear failure, and some core walls were as well. The damaged piloti buildings in Pohang City could be relieved if they were designed correctly according to the standards at that time. However, the post-earthquake investigation revealed design, construction, and permission problems. To solve the problems, the Piloti Building Structure Design Guidelines that include strict specifications were published in 2018. Separately, KDS 41 17 00, the seismic design standard for buildings, was enacted in 2019 and it included the guideline contents. Therefore, at least after the publication of the guidelines, piloti buildings, designed by the standard and guidelines, can be expected to possess better seismic performance than existing piloti buildings. To confirm this, the probability of exceedance for several damage state thresholds was estimated for existing and designed piloti buildings. As a result, the probability of damage of designed piloti buildings was very low compared to existing ones. Consequently, it was confirmed that the guideline and standard adequately supplement the structural fragility of existing piloti buildings.

Strain and deformation angle for a steel pipe elbow using image measurement system under in-plane cyclic loading

  • Kim, Sung-Wan;Choi, Hyoung-Suk;Jeon, Bub-Gyu;Hahm, Dae-Gi;Kim, Min-Kyu
    • Nuclear Engineering and Technology
    • /
    • v.50 no.1
    • /
    • pp.190-202
    • /
    • 2018
  • Maintaining the integrity of the major equipment in nuclear power plants is critical to the safety of the structures. In particular, the soundness of the piping is a critical matter that is directly linked to the safety of nuclear power plants. Currently, the limit state of the piping design standard is plastic collapse, and the actual pipe failure is leakage due to a penetration crack. Actual pipe failure, however, cannot be applied to the analysis of seismic fragility because it is difficult to quantify. This paper proposes methods of measuring the failure strain and deformation angle, which are necessary for evaluating the quantitative failure criteria of the steel pipe elbow using an image measurement system. Furthermore, the failure strain and deformation angle, which cannot be measured using the conventional sensors, were efficiently measured using the proposed methods.

Multi-Objective Integrated Optimal Design of Hybrid Structure-Damper System Satisfying Target Reliability (목표신뢰성을 만족하는 구조물-감쇠기 복합시스템의 다목적 통합최적설계)

  • Ok, Seung-Yong;Park, Kwan-Soon;Song, Jun-Ho;Koh, Hyun-Moo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.2
    • /
    • pp.9-22
    • /
    • 2008
  • This paper presents an integrated optimal design technique of a hybrid structure-damper system for improving the seismic performance of the structure. The proposed technique corresponds to the optimal distribution of the stiffness and dampers. The multi-objective optimization technique is introduced to deal with the optimal design problem of the hybrid system, which is reformulated into the multi-objective optimization problem with a constraint of target reliability in an efficient manner. An illustrative example shows that the proposed technique can provide a set of Pareto optimal solutions embracing the solutions obtained by the conventional sequential design method and single-objective optimization method based on weighted summation scheme. Based on the stiffness and damping capacities, three representative designs are selected among the Pareto optimal solutions and their seismic performances are investigated through the parametric studies on the dynamic characteristics of the seismic events. The comparative results demonstrate that the proposed approach can be efficiently applied to the optimal design problem for improving the seismic performance of the structure.

Seismic Fragility Function for Existing Low-Rise Piloti-Type Buildings Reflecting Damage From Pohang Earthquake (포항지진의 피해 결과를 반영한 기존 저층 필로티 건물의 지진취약도함수)

  • Kim, Jinyoung;Kim, Taewan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.6
    • /
    • pp.251-259
    • /
    • 2021
  • Current seismic fragility functions for buildings were developed by defining damage state threshold based on story drift concerning foreign references and using the capacity spectrum method based on spectral displacement. In this study, insufficient details and dependence on the core location of piloti-type buildings were not reflected in the fragility function because it was developed before the Pohang earthquake. In order to develop an improved one for piloti-type buildings, several types of core were selected, damage state threshold was determined based on the capacity of structural members, and three-dimensional analyses were utilized. As a result, seismic fragility functions based on spectral acceleration were developed for various core locations and different shear strengths of the column stirrup. The fragility of piloti-type buildings significantly varied according to core location, an additional single wall, and whether the contribution of column stirrup was included or not. To estimate fragility more reasonably, it is necessary to prepare the parameters to reflect actual state well.

Dynamic equivalent model of a SMART control rod drive mechanism for a seismic analysis

  • Ahn, Kwanghyun;Lee, Jae-Seon
    • Nuclear Engineering and Technology
    • /
    • v.52 no.8
    • /
    • pp.1834-1846
    • /
    • 2020
  • The SMART (System-integrated Modular Advanced ReacTor) is an integral-type small modular reactor developed by KAERI (Korea Atomic Energy Research Institute). This paper discusses the development of a dynamic equivalent model of the SMART control rod drive mechanism that can be efficiently utilized for complicated analysis during the design of the SMART. A semi-empirical approach is used to develop the equivalent model; that is, the equivalent model is defined analytically and verified empirically. Two types of tests, dynamic characteristics tests and seismic loading tests, are conducted for the development and verification of the dynamic equivalent model, respectively. Acceleration response spectra from the seismic analysis based on the developed equivalent model show good agreement with those from the seismic loading tests.