In this study, the effect of precipitation temperature, ammonium chloride amount and addition method, vanadium and sodium hydroxide content of the solution on the precipitation of ammonium metavanadate were examined by using the sodium vanadate(NaVO3) solution in alkali region as a starting material. As the pH of solution decreased, the addition amount of ammonium chloride and the vanadium content of the solution increased, the precipitation rate of ammonium metavanadate increased. In this research condition, the basic conditions for obtaining more than 90% of precipitation yield were 10,000mg/L of vanadium content, 2equivalents of ammonium chloride addition, room temperature, and 2 hours of precipitation time. The size of precipitated particles decreased with increasing precipitation rate. Especially when liquid ammonium chloride was injected into the solution, the precipitation rate was the slowest and the particle size of the precipitate was the largest. After the primary precipitation by adding ammonium chloride as a solid, the secondary precipitation was carried out by adding new reactants. At this time, the precipitation with added ammonium chloride solid was not affected by the precipitates present in the solution. However, when liquid ammonium chloride was added, new precipitate was deposited on the surface of the precipitate present in the solution, increasing its size. Due to the difference in ammonium metavanadate solubility to temperature, the precipitation temperature at the vanadium content of 10,000mg/L in the solution affected the precipitation rate of ammonium metavanadate and the precipitation temperature did not affect the precipitation rate at a high concentration of more than 30,000mg/L vanadium content in the solution.
Characteristics of precipitation and temperature in Ulleung-do and Dok-do were analyzed with hourly accumulated precipitation and mean temperature data obtained from Automatic Weather System(AWS) for latest four years(2005~2008). In Ulleung-do, total annual mean precipitation for this period is 1,574.4 mm, which shows larger amount than 1434.2 mm of whole Korean peninsula for latest 10 years(1999~2008) and 1,236.2 mm at Ulleung-do on common years(1971~2000), shows that the trend of precipitation gradually increases during the recent years. This amount is also 1.4 times larger than the total annual mean precipitation of 660.1 mm in Dok-do. Mean precipitation intensity(mm $h^{-1}$) at each time of a day in each month at Ulleung-do represents that the maximum values larger than $3.0\;mm\;h^{-1}$ were shown in May and on 0200 LST, whereas these were found in August and 0700 LST with $3.1\;mm\;h^{-1}$ in Dok-do. The difference of the precipitation amount and its intensity between Uleung-do and Dok-do is explained by the topological effect came from each covering area, and this fact is also identified from similar comparison of the precipitation characteristics for the islands in West Sea. The annual mean temperature of $14.0^{\circ}C$ in Dok-do is $1.2^{\circ}C$ higher than that of $12.8^{\circ}C$ in Ulleung-do. Trends of monthly mean temperature in both islands are shown to increase for the observed period.
Although the Radar-AWS Rainrate (RAR) calculation system operated by Korea Meteorological Administration estimated precipitation using 2-dimensional composite components of single polarization radars, this system has several limitations in estimating the precipitation accurately. To to overcome limitations of the RAR system, the Korea Meteorological Administration developed and operated the RMQ (Radar-based Multi-sensor Quantitative Precipitation Estimation) system, the improved version of NMQ (National Mosaic and Multi-sensor Quantitative Precipitation Estimation) system of NSSL (National Severe Storms Laboratory) for the Korean Peninsula. This study introduced the RMQ system domestically for the first time and verified the precipitation estimation performance of the RMQ system. The RMQ system consists of 4 main parts as the process of handling the single radar data, merging 3D reflectivity, QPE, and displaying result images. The first process (handling of the single radar data) has the pre-process of a radar data (transformation of data format and quality control), the production of a vertical profile of reflectivity and the correction of bright-band, and the conduction of hydrid scan reflectivity. The next process (merger of 3D reflectivity) produces the 3D composite reflectivity field after correcting the quality controlled single radar reflectivity. The QPE process classifies the precipitation types using multi-sensor information and estimates quantitative precipitation using several Z-R relationships which are proper for precipitation types. This process also corrects the precipitation using the AWS position with local gauge correction technique. The last process displays the final results transformed into images in the web-site. This study also estimated the accuracy of the RMQ system with five events in 2012 summer season and compared the results of the RAR (Radar-AWS Rainrate) and RMQ systems. The RMQ system ($2.36mm\;hr^{-1}$ in RMSE on average) is superior to the RAR system ($8.33mm\;hr^{-1}$ in RMSE) and improved by 73.25% in RMSE and 25.56% in correlation coefficient on average. The precipitation composite field images produced by the RMQ system are almost identical to the AWS (Automatic Weather Statioin) images. Therefore, the RMQ system has contributed to improve the accuracy of precipitation estimation using weather radars and operation of the RMQ system in the work field in future enables to cope with the extreme weather conditions actively.
The seasonal variation and frequency of precipitation phenomenon of the Korean Peninsula in summer show strong local weather phenomena because of its topographical and geographical factors in the northeastern area of Asia. The characteristics of the prevailing weather patterns in summer precipitation in Korea have great influences on the variation patterns and the appearances over a ten-day period during the summer precipitation. The purpose of this paper is to induce variation patterns over a period 10 days during the summer precipitation, clarify the variations of their space scales, and study the subdivision of precipitation regions in Korea according to the combinations of precipitation amounts and variation pattern during the period, using the mean values during the years $1991\~2003$ at 78 stations in Korea. The classified precipitation of a period of 10 days of summer precipitation, and the principal component vector and the amplitude coefficient by the principal component analysis were used for this study. The characteristics of variation pattern over the ten-day period can be chiefly divided into two categories and the accumulated contributory rate of these is $64.3\%$. The variation patterns of summer precipitation during period of 10 days in Korea are classified into 9 types from A to K. In addition, regional divisions of summer precipitation in Korea can be classified into 17 types.
Three free parameters included in a cumulus parameterization are optimized by using micro-genetic algorithm for three precipitation cases occurred in the Korea Peninsula during the summer season in order to reduce biases in a regional model associated with the uncertainties of the parameters and thus to improve the predictability of precipitation. The first parameter is the one that determines the threshold in convective trigger condition. The second parameter is the one that determines boundary layer forcing in convective closure. Finally, the third parameter is the one used in calculating conversion parameter determining the fraction of condensate converted to convective precipitation. Optimized parameters reduce the occurrence of convections by suppressing the trigger of convection. The reduced convection occurrence decreases light precipitation but increases heavy precipitation. The sensitivity experiments are conducted to examine the effects of the optimized parameters on the predictability of precipitation. The predictability of precipitation is the best when the three optimized parameters are applied to the parameterization at the same time. The first parameter most dominantly affects the predictability of precipitation. Short-range forecasts for July 2018 are also conducted to statistically assess the precipitation predictability. It is found that the predictability of precipitation is consistently improved with the optimized parameters.
In, So-Ra;Han, Sang-Ok;Im, Eun-Soon;Kim, Ki-Hoon;Shim, JaeKwan
Atmosphere
/
v.24
no.2
/
pp.159-171
/
2014
This study investigated the temporal and spatial characteristics of summertime (June-August) precipitation over Korean peninsula, using Korea Meteorological Administration (KMA)is Automated Synoptic Observing System (ASOS) data for the period of 1973-2010 and Automatic Weather System (AWS) data for the period of 1998-2010.The authors looked through climatological features of the summertime precipitation, then examined the degree of locality of the precipitation, and probable precipitation amount and its return period of 100 years (i.e., an extreme precipitation event). The amount of monthly total precipitation showed increasing trends for all the summer months during the investigated 38-year period. In particular, the increasing trends were more significant for the months of July and August. The increasing trend of July was seen to be more attributable to the increase of precipitation intensity than that of frequency, while the increasing trend of August was seen to be played more importantly by the increase of the precipitation frequency. The e-folding distance, which is calculated using the correlation of the precipitation at the reference station with those at all other stations, revealed that it is August that has the highest locality of hourly precipitation, indicating higher potential of localized heavy rainfall in August compared to other summer months. More localized precipitation was observed over the western parts of the Korean peninsula where terrain is relatively smooth. Using the 38-years long series of maximum daily and hourly precipitation as input for FARD2006 (Frequency Analysis of Rainfall Data Program 2006), it was revealed that precipitation events with either 360 mm $day^{-1}$ or 80 mm $h^{-1}$ can occur with the return period of 100 years over the Korean Peninsula.
This study presents the long-term variability of spring precipitation over the Korean peninsula. It is found that the significant interdecadal change in the spring precipitation has occurred around year 1991. Over the Korean peninsula the precipitation for the post-1991 period increased by about 30 mm per year in CMAP and station-measured data compared to the precipitation prior to year 1991. Due to an increased baroclinicity during the later period, the low-level negative pressure anomaly has developed with its center over northern Japan. Korea is situated at the western end of the negative pressure anomaly, receiving moisture from westerly winds and producing more precipitation. Also, we estimate the change in the near future (years 2020~2040) spring precipitation using six best performing Coupled Model Intercomparison Project 3 (CMIP3) models. These best model ensemble mean shows that spring precipitation is anticipated to increase by about 4% due to the strengthened westerlies accompanied by the northwestern enhancement of the North Pacific subtropical high.
Proceedings of the Korea Water Resources Association Conference
/
2020.06a
/
pp.120-120
/
2020
Spatial precipitation data is one of the essential components in modeling hydrological problems. The estimation of these data has achieved significant achievements own to the recent advances in remote sensing technology. However, there are still gaps between the satellite-derived rainfall data and observed data due to the significant dependence of rainfall on spatial and temporal characteristics. An effective approach based on the Convolutional Neural Network (CNN) model to correct the satellite-derived rainfall data is proposed in this study. The Mekong River basin, one of the largest river system in the world, was selected as a case study. The two gridded precipitation data sets with a spatial resolution of 0.25 degrees used in the CNN model are APHRODITE (Asian Precipitation - Highly-Resolved Observational Data Integration Towards Evaluation) and PERSIANN-CDR (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks). In particular, PERSIANN-CDR data is exploited as satellite-based precipitation data and APHRODITE data is considered as observed rainfall data. In addition to developing a CNN model to correct the satellite-based rain data, another statistical method based on standard deviations for precipitation bias correction was also mentioned in this study. Estimated results indicate that the CNN model illustrates better performance both in spatial and temporal correlation when compared to the standard deviation method. The finding of this study indicated that the CNN model could produce reliable estimates for the gridded precipitation bias correction problem.
Proceedings of the Korea Water Resources Association Conference
/
2022.05a
/
pp.143-143
/
2022
Precipitation plays an essential role in water resources management and disaster prevention. Therefore, the understanding related to spatiotemporal characteristics of rainfall is necessary. Nowadays, highly accurate precipitation is mainly obtained from gauge observation systems. However, the density of gauge stations is a sparse and uneven distribution in mountainous areas. With the proliferation of technology, satellite-based precipitation sources are becoming increasingly common and can provide rainfall information in regions with complex topography. Nevertheless, satellite-based data is that it still remains uncertain. To overcome the above limitation, this study aims to take the strengthens of machine learning to generate a new reanalysis of precipitation data by fusion of multiple satellite precipitation products (SPPs) with gauge observation data. Several machine learning algorithms (i.e., Random Forest, Support Vector Regression, and Artificial Neural Network) have been adopted. To investigate the robustness of the new reanalysis product, observed data were collected to evaluate the accuracy of the products through Kling-Gupta efficiency (KGE), probability of detection (POD), false alarm rate (FAR), and critical success index (CSI). As a result, the new precipitation generated through the machine learning model showed higher accuracy than original satellite rainfall products, and its spatiotemporal variability was better reflected than others. Thus, reanalysis of satellite precipitation product based on machine learning can be useful source input data for hydrological simulations in ungauged river basins.
Journal of the Korean Association of Geographic Information Studies
/
v.16
no.3
/
pp.147-163
/
2013
The purpose of this study is to compare precipitation distributions in precipitation data sets over South Korea produced by three interpolation methods. The differences of precipitation caused by interpolation methods is an important information when the interpolated precipitation data sets were used in researches such as ecological and hydrological modeling as well as regional climate impact studies. In this study, the precipitation data sets were produced by IDW(Inverse Distance Weighting) and Cokriging in this study and the PRISM(Precipitation-elevation Regressions on Independent Slopes Model) data set obtained from Climate Change Information Center of Korea. The spatial resolution of the precipitation data is 1km. As a result, there was a great precipitation difference caused by interpolation methods in data of mountainous watersheds in general. Especially the difference of monthly precipitation was 10~20% or more in the mountainous watersheds near the Military Demarcation Line dividing North and South Korea, Mt. Sobaik, Mt. Worak, Mt. Deogyu, Mt. Jiri and Taeback Mountain Range. It means that a final result of a research can be affected by adopted interpolation method when an interpolated precipitation data set is used in the research for the these study sites.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.