• Title/Summary/Keyword: Korea Augmentation Satellite System

Search Result 97, Processing Time 0.032 seconds

SBAS Non-Standard Data Transmission Method for Korea Augmentation Satellite System Applications (KASS 활용을 위한 위성기반 보강항법시스템(SBAS) 비규격 데이터 전송 방법 연구)

  • Park, Jae-ik;Lee, Eunsung;Heo, Moon-beom;Nam, Gi-wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.12
    • /
    • pp.1861-1867
    • /
    • 2016
  • Korea augmentation satellite system (KASS), which is a satellite-based augmentation system tailored for Korea, was launched for development in 2014. SBAS is a standard for aviation but it can also be utilized in non-aviation applications. The type and content of transmitted in SBAS data format are restricted. In order to utilize SBAS in fields that require the precision within centimeters, additional information has to be transmitted. It is important that data transmitted in nonstandard SBAS data not affect any operation of SBAS equipment. In this paper, we propose a non-standard SBAS data transmission method applicable to non-aviation applications that does not affect aviation SBAS receivers.

Accuracy Analysis of SBAS Satellite Orbit and Clock Corrections using IGS Precise Ephemeris (IGS 정밀궤도력을 이용한 SBAS 위성궤도 및 시계보정정보의 정확도 분석)

  • Jeong, Myeong-Sook;Kim, Jeong-Rae
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.2
    • /
    • pp.178-186
    • /
    • 2009
  • SBAS(Satellite Based Augmentation System) provides GNSS satellite orbit and clock corrections for positioning accuracy improvement of GNSS users. In this paper, the accuracy of SBAS satellite orbit and clock corrections were analyzed by comparing with the IGS(International GNSS Service) precise ephemeris. The GPS antenna phase center offsets and the P1-C1 bias are considered for the analysis. The correction data of the US WAAS and the Japanese MSAS were analyzed. The analysis results showed that the SBAS satellite orbit and clock corrections are highly correlated. The correction data accuracy depends on the SBAS ground network size and orbit trajectories.

  • PDF

Study on Technical Standard of Aviation GNSS for SBAS Performance Based Navigation (SBAS 성능기반 항행을 위한 항공용 GNSS 기술표준 분석 연구)

  • Park, Jae-ik;Lee, Eunsung;Heo, Moon-beom;Nam, Gi-wook
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.4
    • /
    • pp.305-313
    • /
    • 2016
  • International Civil Aviation Organization (ICAO) has recommended the adoption of performance-based navigation (PBN), which utilizes global navigation satellite system (GNSS). As a part of efforts to adopt PBN in South Korea, preparations have been made to implement GNSS. In Oct. 2014, Korea augmentation satellite system (KASS) was officially launched for development. A set of navigation devices need to be on-board for an airplane to utilize GNSS. GNSS navigation devices are used for different phases of flights through en-route, terminal, departure, approach and a wide variety of specification standards have been proposed for GNSS navigation. In this paper, we investigate the many proposed standards for GNSS navigation devices and their interfaces. This paper can be useful for designing procedures and flight test used in KASS implementation.

Conceptual Design of the RF Links for KASS Satellite Communication System (KASS 위성통신시스템 RF 링크 기본 설계)

  • You, Moonhee;Sin, Cheon Sig
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.3
    • /
    • pp.12-17
    • /
    • 2016
  • ICAO (International Civil Aviation Organization) recommends the introduction of SBAS (Satellite Based Augmentation System) in 2025, which provides GNSS (Global Navigation Satellite System) correction data and the ranging signal via GEO (geostationary earth orbit) satellites to GNSS users. In this paper, we present the basic design results of the satellite communication system RF link for the Korean SBAS systems, KASS (Korea Augmentation Satellite System) which is going on the development & implementation. KASS RF link was designed in consideration of both the C-band and Ku-band uplinks to meet the international standard requirements for the SBAS system, and identified the minimum EIRP and G/T performance of the KASS uplink station for each frequency band. These analysis results for the RF link design are expected to be used for an effective design of the subsystem specifications for KASS satellite communication system.

Software Design of GNSS Augmentation System Test & Evaluation Simulator Using Unified Modeling Languge (UML기반의 GNSS 보강시스템 성능평가용 시뮬레이터 소프트웨어 설계)

  • Joo, Jung-Min;Heo, Moon-Beom;Nam, Gi-Wook
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.1213-1214
    • /
    • 2008
  • In this paper, we describe introduction of GNSS Test & Evaluation Facility developing in "Korean aerospace research Institute" and UML based design results of GNSS Augmentation System Test & Evaluation Simulator especially.

  • PDF

Conceptual Design of KASS Uplink Station (한국형 위성항법보강시스템(KASS) 위성통신국 기본 설계)

  • You, Moonhee;Sin, Cheon Sig
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.4
    • /
    • pp.72-77
    • /
    • 2017
  • The Satellite Based Augmentation System (SBAS) broadcasts to users integrity and correction information for Global Navigation Satellite System (GNSS) such as GPS and GLONASS using geostationary orbit (GEO) satellites. In accordance with the recommendation of the International Civilian Aeronautical Organization (ICAO) to introduce SBAS until 2025, a Korean SBAS system development / construction project is underway with the Ministry of Land, Transport and Maritime Affairs. Korea Augmentation Satellite System (KASS) is a high precision GPS correction system which is composed of KASS Reference Station (KRS), KASS Processing Station (KPS), KASS Uplink Station (KUS), KASS Control Station (KCS) and GEO satellites. In this paper, we provided the conceptual design of the KASS uplink station, which is composed of the Signal Generator Section (SGS) and the Radio-Frequency Section (RFS), and interface between the KASS ground sector and the GEO satellite.

Accuracy Evaluation of KASS Augmented Navigation by Utilizing Commercial Receivers

  • Sung-Hyun Park;Yong-Hui Park;Jin-Ho Jeong;Jin-Mo Park
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.4
    • /
    • pp.349-358
    • /
    • 2023
  • The Satellite-Based Augmentation System (SBAS) plays a significant role in the fields of aviation and navigation: it corrects signal errors of the Global Navigation Satellite System (GNSS) and provides integrity information to facilitate precise positioning. These SBAS systems have been adopted as international standards by the International Civil Aviation Organization (ICAO). In recent SBAS system design, the Minimum Operational Performance Standards (MOPS) defined by the Radio Technical Commission for Aeronautics (RTCA) must be followed. In October 2014, South Korea embarked on the development of a Korean GPS precision position correction system, referred to as Korea Augmentation Satellite System (KASS). The goal is to achieve APV-1 Standard of Service Level (SoL) service level and acquisition of CAT-1 test operating technology. The first satellite of KASS, KASS Prototype 1, was successfully launched from the Guiana Space Centre in South America on June 23, 2020. In December 2022 and June 2023, the first and second service signals of KASS were broadcasted, and full-scale KASS correction signal broadcasting is scheduled to start at the end of 2023. The aim of this study is to analyze the precision of both the GNSS system and KASS system by comparing them. KASS is also compared with Japan's Multi-functional Satellite Augmentation System (MSAS), which is available in Korea. The final objective of this work is to validate the usefulness of KASS correction navigation in the South Korean operational environment.

Analysis of MSAS Ionosphere Correction Messages and the Effect of Equatorial Anomaly (MSAS 전리층 보정정보 및 적도변이에 의한 영향 분석)

  • Jeong, Myeong-Sook;Kim, Jeong-Rae
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.16 no.2
    • /
    • pp.12-20
    • /
    • 2008
  • Japanese MSAS (Multi-functional Satellite Augmentation System) satellites have been transmitting GPS satellite orbit and ionosphere correction information since 2005. MSAS coverage includes Far East Asia, and it can improve the accuracy and integrity of GPS position solutions in Korea. This research analyzed the ionosphere correction information from the MSAS ionosphere correction data. The ionosphere delay data observed by a dual frequency receiver is compared with the MSAS ionosphere correction data. The variation of MSAS GIVE values are analyzed in connection with the equatorial anomaly and ionosphere scintillation.

  • PDF

Navigation Performance Analysis of KASS Test Signals

  • Daehee Won;Eunsung Lee;Chulhee Choi
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.4
    • /
    • pp.369-377
    • /
    • 2023
  • This paper presents the analysis results of navigation performance of Korea Augmentation Satellite System (KASS) test signals. Performance analysis was performed with Global Positioning System (GPS) and Satellite Based Augmentation System (SBAS) signals received from 7 KASS reference stations. And the performances were analyzed in terms of the signal strength, statistics for each SBAS message, coverage of ionospheric correction, accuracy, integrity, continuity, and availability. In addition, the navigation solutions provided by commercial receiver was analyzed and the performance experienced by general users was presented. Lastly, directions for further improvement of the KASS system were addressed. These performance analysis results can be used to confirm the feasibility of utilizing KASS in user applications.

Considerations on In-Flight Validation for KASS (KASS 비행시험 및 검사 시 고려사항 분석)

  • Koo, Bon-Soo;Lee, Eun-Sung;Nam, Gi-Wook;Kang, Jae-Min;Cho, Jeong-Ho;Hong, Gyo-Young
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.3
    • /
    • pp.175-181
    • /
    • 2015
  • Method establishment needs for recent shortening the flight path, fuel reduction, reduction of the flight delay time, increase of the route capacity like as relieve congested airspace and solving future demand. However, As the existing conventional navigation systems is impossible to be resolved. Hereupon, SBAS has been developed with using the GNSS. ICAO has recommended that SBAS need to be operated with aircraft operation from 2025, korea is also developing KASS in accordance with the recommendation. In this paper, before the 2022 KASS will be completed, KASS can be expected using for flight test and inspection as analyzing KASS flight test and relative specifications.