• Title/Summary/Keyword: Kompsat-2 영상

Search Result 275, Processing Time 0.031 seconds

Analysis of Geolocation Accuracy of KOMPSAT-3 Imagery (KOMPSAT-3 영상의 기하정확도 분석)

  • Jeong, Jaehoon;Kim, Jaein;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.1
    • /
    • pp.37-45
    • /
    • 2014
  • This paper reports the geolocation accuracy of KOMPSAT-3 imagery. KOMPSAT-3 was launched successfully on May 18, 2012 and has been released last March. In this paper, we have checked the geolocation accuracy of initial sensor model, precise sensor model and stereo-and multi-image model using four KOMPSAT-3 images covering the same area. The KOMPSAT-3 images without GCPs provided the geolocation accuracy of about 30m and the geocorrected KOMPSAT-3 images provided the geolocation accuracy of about 1m or less. KOMPSAT-3 stereo- and multi-images models yield threedimensional points with sub-meter accuracy in horizontal and vertical direction. Overall, KOMPSAT-3 showed much improved performance in terms of the geolocation accuracy over KOMPSAT-2. KOMPSAT-3 is expected to be able to replace foreign satellite data with sub-meter accuracy level for achieving accurate geometric information.

Analysis for Practical use as KOMPSAT-2 Imagery for Product of Geo-Spatial Information (지형공간정보 생성을 위한 KOPMSAT-2 영상의 활용성 분석)

  • Lee, Hyun-Jik;You, Ji-Ho;Koh, Young-Chang
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.17 no.1
    • /
    • pp.21-35
    • /
    • 2009
  • KOMPSAT-2 is the seventh high-resolution image satellite in the world that provides both 1m-grade panchromatic images of the GSD and 4m-grade multispectral images of the GSD. It's anticipated to be used across many different areas including mapping, territory monitoring and environmental watch. However, due to the complexity and security concern involved with the use of the MSC, the use of KOMPSAT-2 images are limited in terms of geometric images, such as satellite orbits and detailed mapping information. Therefore, this study aims to produce DEM and orthoimage by using the stereo images of KOMPSAT-2, and to explore the applicability of geo-spatial information with KOMPSAT -2. Orientation interpretations were essential for the production of DEM and orthoimage using KOMPSAT-2 images. In the study, they are performed by utilizing both RPC and GCP. In this study, the orientation interpretations are followed by the generation of DEM and orthoimage, and the analysis of their accuracy based on a 1:5,000 digital map. The accuracy analysis of DEM is performed and the results indicate that their altitudes are, in general, higher than those obtained from the digital map. The altitude discrepancies on plains, hills and mountains are calculated as 1.8m, 7.2m, and 11.9m, respectively. In this study, the mean differences between horizontal position between the orthoimage data and the digital map data are found to be ${\pm}3.081m$, which is in the range of ${\pm}3.5m$, within the permitted limit of a 1:5,000 digital map. KOMPSAT-2 images are used to produce DEM and orthoimage in this research. The results suggest that DEM can be adequately used to produce digital maps under 1:5,000 scale.

  • PDF

Analysis and Improvement of Interior Orientation Accuracy of KOMPSAT-2 PANchromatic Bands (KOMPSAT-2 영상 PAN밴드의 내부표정 정확도 분석 및 개선방안 연구)

  • Kim, Tae-Jung;Jeong, Jae-Hoon;Kim, Deok-In
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.4
    • /
    • pp.439-449
    • /
    • 2010
  • This paper reports experiments and analysis work done to find out the cause of Y parallex for stereo pairs of KOMPSAT-2 images and means to improve the Y parallex problem. We could conclude that the Y parallex problem was caused by resampling errors of KOMPSAT-2 PANchromatic bands, induced by the process of warping PANchromatic band with reference to multispectral bands. We could also conclude that a rigorous warping process could improve resampling of KOMPSAT-2 PANchromatic band and remove the Y parallex problem significantly. We also confirmed that a rigorous warping process could also remove blocky brightness patterns present on KOMPSAT-2 PANchromatic band. Therefore, by implementing more rigorous warping process within KOMPSAT-2 scene generation procedures, KOMPSAT-2 geometric and radiometric quality will be improved.

Brightness Value Comparison Between KOMPSAT-2 Images with IKONOS/GEOEYE-1 Images (KOMPSAT-2 영상과 IKONOS/GEOEYE-1 영상의 밝기값 상호비교)

  • Kim, Hye-On;Kim, Tae-Jung;Lee, Hyuk
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.2
    • /
    • pp.181-189
    • /
    • 2012
  • Recently, interest in potential for estimating water quality using high resolution satellite images is increasing. However, low SNR(Signal to Noise Ratio) over inland water and radiometric errors such as non-linearity of brightness value of high resolution satellite images often lead to accuracy degradation in water quality estimation. Therefore radiometric correction should be carried out to estimate water quality for high resolution satellite images. For KOMPSAT-2 images parameters for brightness value-radiance conversion are not available and precise radiometric correction is difficult. To exploit KOMPSAT-2 images for water quality monitoring, it is necessary to investigate non-linearity of brightness value and noise over inland water. In this paper, we performed brightness value comparison between KOMPSAT-2 images and IKONOS/GeoEye-1, which are known to show the linearity. We used the images obtained over the same area and on the same date for comparison. As a result, we showed that although KOMPSAT-2 images are more noisy;the trend of brightness value and pattern of noise are almost similar to reference images. The results showed that appropriate target area to minimize the impact of noise was $5{\times}5$. Non-linearity of brightness value between KOMPSAT-2 and reference images was not observed. Therefore we could conclude that KOMPSAT-2 may be used for estimation of water quality parameters such as concentration of chlorophyll.

The comparative analysis of image fusion results by using KOMPSAT-2/3 images (아리랑 2호/3호 영상을 이용한 영상융합 비교 분석)

  • Oh, Kwan Young;Jung, Hyung Sup;Jeong, Nam Ki;Lee, Kwang Jae
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.2
    • /
    • pp.117-132
    • /
    • 2014
  • This paper had a purpose on analyzing result data from pan-sharpening, which have applied on the KOMPSAT-2 and -3 image. Particularly, the study focused on comparing each relative spectral response functions, which considers to cause color distortions of fused image. Two images from same time and location have been collected by KOMPSAT-2 and -3 to apply in the experiment. State-of-the-art algorithms of GIHS, GS1, GSA and GSA-CA were employed for analyzing the results in quantitatively and qualitatively. Following analysis of previous studies, GSA and GSA-CA methods resulted excellent quality in both of KOMPSAT-2/3 results, since they minimize spectral discordances between intensity and PAN image by the linear regression algorithm. It is notable that performances from KOMPSAT-2 and- 3 are not equal under same circumstances because of different spectral characteristics. In fact, KOMPSAT-2 is known as over-injection of low spatial resolution components of blue and green band, are greater than that of the PAN band. KOMPSAT-3, however, has been advanced in most of misperformances and weaknesses comparing from the KOMPSAT-2.

Change Detection Comparison of Multitemporal Infrared Satellite Imagery Using Relative Radiometric Normalization (상대 방사 정규화를 이용한 다시기 적외 위성영상의 변화탐지 비교)

  • Han, Dongyeob;Song, Jeongheon;Byun, Younggi
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_3
    • /
    • pp.1179-1185
    • /
    • 2017
  • The KOMPSAT-3A satellite acquires high-resolution MWIR images twice a day compared to conventional Earth observing satellites. New radiometric information of Earth's surface can be provided due to different characteristics from existing SWIR images or TIR images. In this study, the difference image of multitemporal images was generated and compared with existing infrared images to find the characteristics of KOMPSAT-3A MWIR satellite images. A co-registration was performed and the difference between pixel values was minimized by using PIFs (Pseudo Invariant Features) pixel-based relative normalization. The experiment using Sentinel-2 SWIR image, Landsat 8 TIR image, and KOMPSAT-3A MWIR image showed that the distinction between artifacts in the difference image of KOMPSAT-3A is prominent. It is believed that the utilization of KOMPSAT-3A MWIR images can be improved by using the characteristics of IR image.

Epipolar Resampling from Kompsat-2 and Kompsat-3 (아리랑 위성 2호와 3호를 이용한 이종 영상 간 에피폴라 영상 생성)

  • Song, Jeong-Heon;Oh, Jae-Hong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.4
    • /
    • pp.156-166
    • /
    • 2014
  • As of 2014, KARI (Korea Aerospace Research Institute) operates two high-resolution satellites such as Kompsat-2 and Kompsat-3. Kompsat-3 has capability of in-track stereo images acquisition but it is quite limited because the stereo mode lowers the spatial coverage in a trajectory. In this paper we analyze the epipolar geometry from the heterogeneous Kompsat-2 and Kompsat-3 image combination to epipolar resample them for 3D spatial data acquisition. The analysis was carried out using the piecewise approach with RPCs (Rational Polynomial Coefficients) and the result showed the parabolic epipolar curve pattern. We also concluded that the third order polynomial transformation is required for epipolar image resampling. The resampled image pair showed 1 pixel level of y-parallax and can be used for 3D display and digitizing.

DEM Generation from Kompsat-2 Images and Accuracy Comparison by Using Common Software (Kompsat-2 영상의 DEM 생성 및 상용 소프트웨어와의 성능평가)

  • Rhee, Soo-Ahm;Jeong, Jae-Hoon;Kim, Tae-Jung
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.4
    • /
    • pp.359-366
    • /
    • 2009
  • Research of accurate DEM generation using images of Kompsat-2 is not enough. This paper focused on generation of accurate Kompsat-2 DEM and comparison with DEM from common software like PCI Geomatica and ENVI. For Kompsat-2 DEM generation, we applied orbit-attitude sensor modeling technique and matching method based on epipolarity and image geometry. The comparison of performance with each commercial programs made a qualitative experiment through naked eyes and a quantitative experiment with USGS DTED. The accuracy was judged by the average absolute error and RMS error with DIED. The result of comparison experiment, we could confirm that the method used in the experiment showed much better performance than DEM made from other commercial programs in most of images.

Spectral quality compensation of KOMPSAT-2 fused image by using induction technique (영상 유도 기법을 통한 KOMPSA를-2 융합영상의 분광정보 보정)

  • Choi, Jae-Wan;Kim, Yong-Il
    • Proceedings of the KSRS Conference
    • /
    • 2009.03a
    • /
    • pp.186-189
    • /
    • 2009
  • KOMPSAT-2 고해상도 위성영상이 제공됨에 따라, 국내에서도 고해상도 위성영상을 활용한 다양한 연구 및 활용 사례가 증대되고 있다. KOMPSAT-2는 높은 공간해상도의 흑백영상과 멀티스펙트럴 영상을 동시에 제공하고 있는데, 개체 추출 및 고해상도의 토지 피복도 생성, 영상의 시각화를 위한 고해상도 멀티스펙트럴 영상 취득이 주요한 실정이다. 따라서 서로 다른 공간, 분광해 상도를 가지는 센서 자료를 이용하여 두 개의 장점을 모두 가지는 영상으로 재구성하는 영상융합은 원격탐사분야에서 중요한 연구분야이다. 이를 위해 다양한 영상융합기법이 연구되었지만, 대부분의 알고리즘들이 융합 후에 원 멀티스펙트럴 영상의 분광정보를 왜곡시키는 문제점을 지니고 있다. 본 연구에서는 영상 유도기법을 이용하여 융합영상의 분광정보를 향상시키는 방법을 제안하였다. 원 멀티스펙트럴 영상과 해상도를 낮춘 융합영상과의 비교 분석을 통하여 융합영상의 공간해상도 왜곡은 최소한으로 줄이고 왜곡된 분광정보를 최대한 보정하였다. 다양한 알고리즘을 통해 얻은 KOMPSAT-2 융합 영상에 본 알고리즘을 적용한 결과, 분광정보 왜곡량이 기존의 융합결과에 비해 줄어든 것을 확인할 수 있었으며, 이러한 결과는 다양한 응용분야에 활용될 수 있을 것이다.

  • PDF

Comparison of High Resolution Image by Ortho Rectification Accuracy and Correlation Each Band (고해상도 영상의 정사보정 정확도 검증 및 밴드별 상관성 비교연구)

  • Jin, Cheong-Gil;Park, So-Young;Kim, Hyung-Seok;Chun, Yong-Sik;Choi, Chul-Uong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.2
    • /
    • pp.35-45
    • /
    • 2010
  • The objective of this study is to verify the positional accuracy by performing the orthometric corrections on the high resolution satellite images and to analyze the band correlation between the high resolution images corrected with orthometric correction. The objectives also included an analysis on the correlation of NDVI. For the orthometric correction of images from KOMPSAT2 and IKONOS, systematic errors were removed in use of RPC data, and non-planar distortions were corrected with GPS surveying data. Also, by preempting the image points at the same positions within ortho images, a comparison was performed on positional accuracies between image points of each image and GPS surveying points. The comparison was also made on the positional accuracies of image points. between the images. For correlation of band and correlation of NDVI, the descriptive statistics of DN values were acquired for respective bands by adding the Quickbird images and Aerial Photographs undergone through orthometric correction at the time of purchase. As result, from a comparison on positional accuracies of Orthoimages from KOMPSAT2 and Ortho Images of IKONOS was made. From the comparison the distance between the image points within each image and GPS surveying points was identified as 3.41m for KOMPSAT2 and as 1.45m for IKONOS, presenting a difference of 1.96m. Whereas, RMSE between image points was identified as 1.88m. The level of correlation was measured by using Quickbird, KOMPSAT2, IKONOS and Aerial Photographs between inter-image bands and NDVI, showing that there were high levels of correlation between Quickbird and IKONOS identified from all bands as well as from NDVI, except a high level of correlation that was identified between the Aerial Photographs and KOMPSAT2 from Band 2. Low levels of correlation were also identified between Quickbird and Aerial Photographs from Band 1. and between KOMPSAT2 and IKONOS from Band 2 and Band 4, whereas, KOMPSAT2 showed low correlations with Aerial Photographs from Band 3. For NDVI, KOMPSAT2 showed low level of correlations with both of QuickBird and IKONOS.