• Title/Summary/Keyword: Kolmogorov-Smirnov goodness-of-fit test

Search Result 52, Processing Time 0.018 seconds

A Fundamental Study of Probability Functions and Relationship of Wave Heights. -On the Wave Heights of the East Coast of Korea- (파고의 확률분포 및 상관에 관한 기초적 연구 - 동해안의 파고를 중심으로 하여 -)

  • 윤해식;이순탁
    • Water for future
    • /
    • v.7 no.2
    • /
    • pp.99-106
    • /
    • 1974
  • The records of wave heights which were observed at Muk ho and Po hang of the East Coast of Korea were analized by several probility functions. The exponential 2 parameter distribution was found as the best fit probability function to the historical distribution of wave heights by the test of goodness of fit. But log-normal 2 parameter and log-extremal type A distributions were also fit to the historical distribution, especially in the Smirnov-Kolmogorov test. Therefore, it can't be always regarded that those two distributions are not fit to the wave heiht's distribution. In the test of goodness of fit, the Chi-Square test gave very sensitive results and Smirnov-Kolmogorov test, which is a distribution free and non-parametric test, gave more inclusive results. At the next stage, the inter-relationship between the mean and the one-third wave heights, the mean and the one-=tenth wave heights, the one-third and the one-tenth wave heights, the one-third and the highest wave heights were obtained and discussed.

  • PDF

Goodness-of-fit tests for randomly censored Weibull distributions with estimated parameters

  • Kim, Namhyun
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.5
    • /
    • pp.519-531
    • /
    • 2017
  • We consider goodness-of-fit test statistics for Weibull distributions when data are randomly censored and the parameters are unknown. Koziol and Green (Biometrika, 63, 465-474, 1976) proposed the $Cram\acute{e}r$-von Mises statistic's randomly censored version for a simple hypothesis based on the Kaplan-Meier product limit of the distribution function. We apply their idea to the other statistics based on the empirical distribution function such as the Kolmogorov-Smirnov and Liao and Shimokawa (Journal of Statistical Computation and Simulation, 64, 23-48, 1999) statistics. The latter is a hybrid of the Kolmogorov-Smirnov, $Cram\acute{e}r$-von Mises, and Anderson-Darling statistics. These statistics as well as the Koziol-Green statistic are considered as test statistics for randomly censored Weibull distributions with estimated parameters. The null distributions depend on the estimation method since the test statistics are not distribution free when the parameters are estimated. Maximum likelihood estimation and the graphical plotting method with the least squares are considered for parameter estimation. A simulation study enables the Liao-Shimokawa statistic to show a relatively high power in many alternatives; however, the null distribution heavily depends on the parameter estimation. Meanwhile, the Koziol-Green statistic provides moderate power and the null distribution does not significantly change upon the parameter estimation.

A Study on Goodness of Fit Test in Accelerated Life Tests (가속수명시험에 대한 적합도 검정에 관한 연구)

  • Lee, Woo-Dong;Cho, Geon-Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.7 no.1
    • /
    • pp.37-46
    • /
    • 1996
  • In this paper, we introduce the goodness of fit test procedure for lifetime distribution using step stress accelerated lifetime data. Using the nonpapametric estimate of acceleration factor, we prove the strong consistence of empirical distribution function under null hypothesis. The critical vailues of Kolmogorov-Smirnov, Anderson-Darling, Cramer-von Mises statistics are computed when the lifetime distibution is assumed to be exponential and Weibull. The power of test statistics are compared through Monte-Cairo simulation study.

  • PDF

Numerical Approach with Kolmogorov-Smirnov Test for Detection of Impulsive Noise (임펄스성 잡음의 유무를 결정하는 Kolmogorov-Smirnov 검증의 수치적 접근의 효율성)

  • Oh, Hyungkook;Nam, Haewoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.9
    • /
    • pp.852-860
    • /
    • 2014
  • This paper proposes an efficient algorithm based on Kolmogorov-Smirnov test to determine the presence of impulsive noise in the given environment. Kolmogorov-Smirnov and Chi-Square tests are known in the literature to serve as a goodness-of-fit test especially for a testing for normality of the distribution. But these algorithms are difficult to implement in practice due to high complexity. The proposed algorithm gives a significant reduction of the computational complexity while decreasing the error probability of hypothesis test, which is shown in the simulation results. Also, it is worth noting that the proposed algorithm is not dependent on the noise environment.

Goodness of Fit Testing for Exponential Distribution in Step-Stress Accelerated Life Testing (계단충격가속수명시험에서의 지수분포에 대한 적합도검정)

  • Jo, Geon-Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.5 no.2
    • /
    • pp.75-85
    • /
    • 1994
  • In this paper, I introduce the goodness-of-fit test statistics for exponential distribution using accelerated life test data. The ALT lifetime data were obtained by assuming step-stress ALT model, specially TRV model introduced by DeGroot and Goel(1979). The critical values are obtained for proposed test statistics, Kolmogorov-Smirnov, Kuiper, Watson, Cramer-von Mises, Anderson-Darling type, under various sample sizes and significance levels. The powers of the five test statistic are compared through Monte-Cairo simulation technique.

  • PDF

Goodness-of-fit Tests for the Weibull Distribution Based on the Sample Entropy

  • Kang, Suk-Bok;Lee, Hwa-Jung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.1
    • /
    • pp.259-268
    • /
    • 2006
  • For Type-II censored sample, we propose three modified entropy estimators based on the Vasieck's estimator, van Es' estimator, and Correa's estimator. We also propose the goodness-of-fit tests of the Weibull distribution based on the modified entropy estimators. We simulate the mean squared errors (MSE) of the proposed entropy estimators and the powers of the proposed tests. We also compare the proposed tests with the modified Kolmogorov-Smirnov and Cramer-von-Mises tests which were proposed by Kang et al. (2003).

  • PDF

A Kernel Approach to the Goodness of Fit Problem

  • Kim, Dae-Hak
    • Journal of the Korean Data and Information Science Society
    • /
    • v.6 no.1
    • /
    • pp.31-37
    • /
    • 1995
  • We consider density estimates of the usual type generated by a kernel function. By using the limit theorems for the maximum of normalized deviation of the estimate from its expected value, we propose to use data dependent bandwidth in the tests of goodness of fit based on these statistics. Also a small sample Monte Carlo simulation is conducted and proposed method is compared with Kolmogorov-Smirnov test.

  • PDF

Testing Goodness of Fit in Nonparametric Function Estimation Techniques for Proportional Hazards Model

  • Kim, Jong-Tae
    • Communications for Statistical Applications and Methods
    • /
    • v.4 no.2
    • /
    • pp.435-444
    • /
    • 1997
  • The objective of this study is to investigate the problem of goodness of fit testing based on nonparametric function estimation techniques for the random censorship model. The small and large sample properties of the proposed test, $E_{mn}$, were investigated and it is shown that under the proportional hazard model $E_{mn}$ has higher power compared to the powers of the Kolmogorov -Smirnov, Kuiper, Cramer-von Mises, and analogue of the Cramer-von Mises type test statistic.

  • PDF

Goodness-of-Fit Test for the Normality based on the Generalized Lorenz Curve

  • Cho, Youngseuk;Lee, Kyeongjun
    • Communications for Statistical Applications and Methods
    • /
    • v.21 no.4
    • /
    • pp.309-316
    • /
    • 2014
  • Testing normality is very important because the most common assumption is normality in statistical analysis. We propose a new plot and test statistic to goodness-of-fit test for normality based on the generalized Lorenz curve. We compare the new plot with the Q-Q plot. We also compare the new test statistic with the Kolmogorov-Smirnov (KS), Cramer-von Mises (CVM), Anderson-Darling (AD), Shapiro-Francia (SF), and Shapiro-Wilks (W) test statistic in terms of the power of the test through by Monte Carlo method. As a result, new plot is clearly classified normality and non-normality than Q-Q plot; in addition, the new test statistic is more powerful than the other test statistics for asymmetrical distribution. We check the proposed test statistic and plot using Hodgkin's disease data.

Tests based on EDF statistics for randomly censored normal distributions when parameters are unknown

  • Kim, Namhyun
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.5
    • /
    • pp.431-443
    • /
    • 2019
  • Goodness-of-fit techniques are an important topic in statistical analysis. Censored data occur frequently in survival experiments; therefore, many studies are conducted when data are censored. In this paper we mainly consider test statistics based on the empirical distribution function (EDF) to test normal distributions with unknown location and scale parameters when data are randomly censored. The most famous EDF test statistic is the Kolmogorov-Smirnov; in addition, the quadratic statistics such as the $Cram{\acute{e}}r-von$ Mises and the Anderson-Darling statistic are well known. The $Cram{\acute{e}}r-von$ Mises statistic is generalized to randomly censored cases by Koziol and Green (Biometrika, 63, 465-474, 1976). In this paper, we generalize the Anderson-Darling statistic to randomly censored data using the Kaplan-Meier estimator as it was done by Koziol and Green. A simulation study is conducted under a particular censorship model proposed by Koziol and Green. Through a simulation study, the generalized Anderson-Darling statistic shows the best power against almost all alternatives considered among the three EDF statistics we take into account.