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Testing Goodness of Fit in Nonparametric Function
Estimation Techniques for Proportional Hazards Modell)
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Abstract

The objective of this study is to investigate the problem of goodness of fit
testing based on nonparametric function estimation techniques for the random
censorship model. The small and large sample properties of the proposed test,
E,.., were investigated and it is shown that under the proportional hazard model

E,, has higher power compared to the powers of the Kolmogorov -Smirnov,

Kuiper, Cramér-von Mises, and analogue of the Cramér-von Mises type test
statistic.

1 . Introduction

Let (X;,Yy),,(X, Y, be an independent, identically distributed sequence of
nonnegative random variables. Assume that X; and Y, are independent with absolutely
continuous distribution functions F and G respectively. If X, is randomly censored by
Y; on the right, then the observations available consist of the pairs (Z;,5;) for 1<j<n,
where Z;=min(X;,Y;) and, with I -) standing for the indicator function
8;=KZ;=X). Hence the obsevered Z; constitute a random sample from the
distribution function H. The survival function Sz# of Z, has the property
SA)=Sx() Sy (#) where Sx(#) and Sy(# are the survival functions of X; and Y;

respectively. The usual censorship model is investigated by Kaplan and Meier (1958),
Breslow and Crowley (1974) and many others.

The proportional hazards model is an appealing and potentially useful special

nonparametric or parametric model of random censorship in which there exists a positive
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constant /5, the censoring parameter, such that
SHUH=(Sx(D)* for all ¢, (1.1)

then this model is called the KG model (Koziol and Green (1976)). In this case the
expected proportion of uncensored observations is given by

B(6 )=PAX,<Y)= [ (1-F(T)dF(H=(1+p '=a, (1.2)

where 0<a=(1+p) '<1.The case B8=0, or a=1, corresponds to non-censoring and

the expected number of the censored observations increases as f increases.
Abduskhurov (1987) and Cheng and Lin (1987) independently studied the large sample
properties of the maximum likelihood estimator of Sy which is given by

Sx(H=(SAD)™, (1.3)

where a,=n"! Z:lé‘i and S;(t)=n"! EII(Z,-H). This is called ACL estimator by

Csbrgo (1988). One clear advantage of the ACL estimator over the product-limit is its
much simpler and more informative structure. Csorgo (1988) showed that the ACL
estimator has theoretical advantage compare with to Kaplan-Meier (1958) estimator
defined as

1- F,(»= ;l:Il { 1——12‘%%%]_—1 } Ilz‘“",

with Zy.,< -+ <Z,, denoting the ordered Z-sample and &[;,y being the dJ-value
associated with the 1th Z-order statistic.

In this paper we are concerned with the problem of testing the hypothesis
Hy,: F()=Fy,() for all ¢, (1.4)

where F is a completely known continuous distribution function with density . Thus,

by using the survival function Sx(f), we see that testing H; is equivalent to testing
Hy: Sx{(D=Sy(» for all ¢ - (1.5)

Let Z,(0=Vu{ Fy()—Fy(D}H1—A(DY{1-FH)}, where A, (D=a,(d/{1+a, (D)},

and a.(D=n (tzi:m(n—i) “Y(n—i+1)7'8; Koziol and Green (1976), Koziol (1980),

Ghorai (1992), and many others considered a traditional statistics with the estimator F n

of F to test for Hy and determined its asymptotic distribution in certain case; namely
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the Kolmogorov-Smirnov, Kuiper, Cramér-von Mises, and analogue of the Cramér—von
Mises type test statistic are defined by, respectively,

Ro= Rurr(D= 5% | 2.0, Vu= Vurr= S 2,0— ™ 2 (1),

0¢e (LT 0KLT 0<t<LT

W= W= LLT{ 2,(0)dALH, and  E2=n [ { Fy()—Fo(d YdFy(d),

where L7 is smaller than the largest observed lifetime; in each case, one would reject

the Hj for suitably large values of the test statistic.

2. Comparison Density view of Goodness—of-Fit

In the general setting, the problem discussed in previous section can be specified as
follows: Let T3, -, T, be independent continuous failure times. The hypothesis to be

tested is that the U;=Sy(T;) are independent and identically distributed with uniform

distribution on (0, 1), with the alternative of interest being that the U, are independent
and identically distributed with other distribution.
Proposition Let D be the distribution functi(.)n of U= S;(#), then
D(u)=Sx(Sy ' (), 0<u<l. 2.1
Proof Let Sy()=u, then t=F;'(1—#)=S;'(2) Therefore,
D) =Pr(Se(D<w)=Pr(T=F;(1—w))

=1—-F(F; '(1-w).
Thus, by using the ACL estimator in (1.3), the estimator of I %) can be written by

D,(w) =S8x(S5' ()= (SASg ()™

n '205;
= (27 312 Sy () (2.2)
The corresponding density function of Ui -+, U, is obtained by
fx(Sg ! ()
Aw)="""TF . .
A 23

The function a in (2.3) is called the comparison density function (Parzen (1979)). Thus,
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the Hj in (1.4) is equivalent to
Hy: D(w)y=u, 0<u<l, (2.4)

and, by using the comparison density function for the comparing F and Fy the

goodness-of-fit hypothesis become equivalent to
Hy: dw=1, 0<u<l. (2.5)

To measure the disparity between the comparison density and 1 in (2.5), Eubank,
LaRiccia and Rosenstein (1987), and Kim (1994) used a generalized Fourier series

expansion of & in the viewpoint of nonparametric density estimator which can be
written as

d) =1+ 2 yoiw), 0<us<l, (2.6)

where {p:},_, be a complete orthornomal sequence (CONS) for L,[0,1] with =1 and

7: § are generalized Fourier coefficients

= [ (@@ -D sl du, k=12,

3. The Proposed Test

In the practical problem of d(%) of (2.6), the comparison density can be estimated by first
truncating the series after m terms and then plugging in estimates for the ak‘s by letting

pw)=V2cos(kru). Thus, the estimate d,, of d in (2.6) is given by
dm)=1+ g‘?k,,\/écos(knu), 3.1
where an unbiased Vz - consistent estir_nator of 7; is provided
A?'kn=n—1§;\/§cos(k7rUi), - 3.2

which is obtained by replacing D(x) by the ACL estimator D (w) for U;, -, U,

Using the squared L,[0,1] norm as a measure of distance then gives the test statistic
1 2
Epw =7 ] (du()—D’du

—n gpi,, (3.3)
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with Yt ! 2}\/? cos(kxU;). This reveals that choosing m is tantamount to selecting
&

the proper amount of smoothing for the series estimator d mn I (3.1) for the comparison
density d(w), Thus, a test for Hy could be based directly on an estimator of () if
Hj is rejected.

Neyman (1936) show that the # !y, are independent asymptotically MO0,1) random
variable under Hj and as result E,, is approximately chi-squared distributed with m

degree of freedom under H;. Thus the null hypothesis will be rejected for large values

of E,,.

Theorem 3.1 Under the local alternatives comparison density d,(2)=1-+b(n)w)
with 8 € LY0,1] and b(n) — 0 as #n — o, then, for b(n) = n 2 and fixed m,

Epn 5 (308,
1
where 8,-=J; &X2)pu) du and p; is a complete orthonormal sequence.

Proof For E,, it is known that if b(n)=n""2 then, from Shorack and Wellner
(1986),

E,, % g(zﬂ- 8)2,

4

" d' 4

where, signifies convergence in distribution, the Z; are #a MNO0,1) random

1
variables and 6,-=£ 8w)p u)du with p; defined in (26). Let x°,(d) denoted a

chi-squared random variables with a degrees of freedom and noncentral parameter b&.

1/2

Now, for fixed m and bW(m)=n""'°, E,, converges in distribution x%,,(,gﬁ,z). (See

Eubank and LaRiccia (1992)).

4. Power of The Tests

In this section, we study the finite sample power properties of five tests: namely, the
Kolmogorov-Smirnov, R,,, Kuiper, V,,, Cramér-von Mises, W,, the analogue of the

Cramér-von Mises type test statistic, W,,z, and the proposed test, E,,, for randomly
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censored data introduced. From the simulation studies for finding the optimal m, the
optimal m is 2 in the cases of exponential and Weibull alternatives cases generally.
Therefore, one can use E,, instead of E,,,.

We consider the two cases of particular interest in survival studies to compare the
power of statistic by using the results of simulation study in Koziol (1980): (Case I)

Fo(t)=1—exp (—t), exponential survival, and alternatives Fy(¢)=1—exp (—A%), scale

shifts for A=1.0, 0.8, 0.6, 0.4. (Case II) Fy(¢)=1—exp(—*¢), and alternatives
Fy(t)=1—exp (—t*), Weibull alternatives for A =1.0, 0.6, 0.35, 0.2 to exponentiality.
With each case, the censoring distribution G in the proportional hazard model is assumed
to be rated to Fy by (1—G)=(1—F,)“.

The results of the simulation study are presented in Table 1 and Table 2: the top line
in each block of the tables, the case of A=1, gives the frequencies of the exceeding the

nominal asymptotic 0.05 critical values, and other lines give the frequencies of exceeding
estimated 0.05 critical values. Each figure is based on 1000 samples for the censoring
parameter 8=0.5, 1, and the sample size #=20, 50. The critical values for E,, were

found by simulation with 20000 replicate experiments for the each sample size n.

From the Table 1 and Table 2, the power comparisons reveal the expected trends:
power increases with sample size, but decreases as the amount of censorship increases.
The test using E,, is clearly more powerful than the others. Eubank and LaRiccia

(1992), and Kim (1994) showed that the analogue of E,, type is superior to the statistic

of Cramer-von Mises type. In the random censoring data, we can see that E,, have

significantly better powers than the others from Figure 1 and Figure 2.
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n 5 A K, V. w, w2 E,
1.0 0.104 0.091 0.077 0.053 0.049

20 05 0.8 0.200 0.194 0.215 0.109 0.253
) 0.6 0.592 0.579 0.618 0.399 0.978

0.4 0.941 0.935 0.952 0.838 1.000

1.0 0.091 0.079 0.059 0.049 0.051

50 05 0.8 0.353 0.313 0.359 0.230 0.391
’ 0.6 0.880 0.837 0.893 0.776 0.953

04 0.999 0.998 1.000 0.993 1.000

1.0 0.066 0.054 0.049 0.051 0.048

20 1.0 0.8 0.166 0.172 0.195 0.086 0.130
0.6 0.497 0.492 0.544 0.299 0.786

0.4 0911 0.899 0.932 0.733 0.991

1.0 0.084 0.069 0.054 0.047 0.053

50 1.0 0.8 0.305 0.280 0.318 0.190 0.406
) 0.6 0.814 0.759 0.832 0.652 0.959

0.4 0.997 0.995 0.997 0.989 1,000

< Table 2 > Frequencies of exceeding nominal and estimated 0.05 level
critical values for the Weibull alternatives.

n 5 A R, V. w, w2 E;,
1.0 0.107 0.090 0.079 0.058 0.049

20 05 0.6 0.234 0.276 0.216 0.216 0.253
) 0.35 0.544 0.606 0.568 0.667 0.978

0.2 0.695 0.721 0.748 0.945 0.993

1.0 0.104 0.095 0.072 0.056 0.051

50 05 0.6 0.471 0.604 0.596 0.493 0.587
) 0.35 0.904 0.952 0.995 0.990 1.000

0.2 0.977 0.987 1.000 1.000 1.000

1.0 0.067 0.049 0.046 0.048 0.048

20 1.0 0.6 0.110 0.146 0.184 0.212 0.130
0.35 0.264 0.308 0.531 0.564 0.786

0.2 0.344 0.382 0.781 0.866 0.999

1.0 0.092 0.073 0.061 0.059 0.053

50 1.0 0.6 0.203 0.303 0.389 0.363 0.263
’ 0.35 0.576 0.687 0.958 0.942 0.997

0.2 0.821 0.841 0.998 0.999 1.000
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< Figure 1 > Empirical Power functions for the exponential alternatives

with a=0.05.
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< Figure 2 > Empirical Power functions for the Weibull alternatives
with a=0.05
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