• 제목/요약/키워드: KoBART

검색결과 12건 처리시간 0.023초

한국어 논문 요약을 위한 KoBART와 KoBERT 모델 비교* (Comparison of KoBART and KoBERT models for Korean paper summarization)

  • 전제성;이수안
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.562-564
    • /
    • 2022
  • 통신 기술의 발전으로 일반인들도 다양한 자료들을 인터넷에서 손쉽게 찾아볼 수 있는 시대가 도래하였다. 개인이 접근할 수 있는 정보량이 기하급수적으로 많아 짐에 따라, 이를 효율적으로 요약, 정리하여 보여주는 서비스들의 필요성이 높아지기 시작했다. 본 논문에서는, 자연어 처리 모델인 BART를 40GB 이상의 한국어 텍스트로 미리 학습된 한국어 언어 모델 KoBART를 사용한 한국어 논문 요약 모델을 제안하고, KoBART와 KoBERT 모델의 한국어 논문 요약 성능을 비교한다.

  • PDF

한국어 자연어생성에 적합한 사전훈련 언어모델 특성 연구 (A Study of Pre-trained Language Models for Korean Language Generation)

  • 송민채;신경식
    • 지능정보연구
    • /
    • 제28권4호
    • /
    • pp.309-328
    • /
    • 2022
  • 본 연구는 자연어처리의 분석목적과 추론데이터 성격에 적합한 한국어 사전훈련 언어모델의 특성을 실증분석했다. 이를 위해 자연어생성이 가능한 대표적 사전훈련 언어모델인 BART와 GPT 모델을 실험에 사용했다. 구체적으로 한국어 텍스트를 BART와 GPT 모델에 학습한 사전훈련 언어모델을 사용해 문서요약 생성 성능을 비교했다. 다음으로 추론데이터의 특성에 따라 언어모델의 성능이 어떻게 달라지는지 확인하기 위해 6가지 정보전달성과 4가지 창작물 유형의 한국어 텍스트 문서에 적용했다. 그 결과, 모든 문서유형에서 인코더와 디코더가 모두 있는 BART의 구조가 디코더만 있는 GPT 모델보다 더 높은 성능을 보였다. 추론데이터의 특성이 사전훈련 언어모델의 성능에 미치는 영향을 살펴본 결과, KoGPT는 데이터의 길이에 성능이 비례한 것으로 나타났다. 그러나 길이가 가장 긴 문서에 대해서도 KoGPT보다 KoBART의 성능이 높아 다운스트림 태스크 목적에 맞는 사전훈련 모델의 구조가 자연어생성 성능에 가장 크게 영향을 미치는 요소인 것으로 나타났다. 추가적으로 본 연구에서는 정보전달성과 창작물로 문서의 특징을 구분한 것 외에 품사의 비중으로 문서의 특징을 파악해 사전훈련 언어모델의 성능을 비교했다. 그 결과, KoBART는 어미와 형용사/부사, 동사의 비중이 높을수록 성능이 떨어진 반면 명사의 비중이 클수록 성능이 좋았다. 반면 KoGPT는 KoBART에 비해 품사의 비중과 상관도가 낮았다. 이는 동일한 사전훈련 언어모델이라도 추론데이터의 특성에 따라 자연어생성 성능이 달라지기 때문에 다운스트림 태스크에 사전훈련 언어모델 적용 시 미세조정 외에 추론데이터의 특성에 대한 고려가 중요함을 의미한다. 향후 어순 등 분석을 통해 추론데이터의 특성을 파악하고, 이것이 한국어 생성에 미치는 영향을 분석한다면 한국어 특성에 적합한 언어모델이나 자연어생성 성능 지표 개발이 가능할 것이다.

딥러닝 기반의 문서요약기법을 활용한 뉴스 추천 (News Recommendation Exploiting Document Summarization based on Deep Learning)

  • 허지욱
    • 한국인터넷방송통신학회논문지
    • /
    • 제22권4호
    • /
    • pp.23-28
    • /
    • 2022
  • 최근 스마트폰 또는 타블렛 PC와 같은 스마트기기가 정보의 창구 역할을 하게 되면서 다수의 사용자가 웹포털을 통해 웹 뉴스를 소비하는 것이 더욱 중요해졌다. 하지만 인터넷 상에 생성되는 뉴스의 양을 사용자들이 따라가기 힘들며 중복되고 반복되는 폭발하는 뉴스 기사에 오히려 혼란을 야기 시킬 수도 있다. 본 논문에서는 뉴스 포털에서 사용자의 질의로부터 검색된 뉴스후보들 중 KoBART 기반의 문서요약 기술을 활용한 뉴스 추천 시스템을 제안한다. 실험을 통해서 새롭게 수집된 뉴스 데이터를 기반으로 학습한 KoBART의 성능이 사전훈련보다 더욱 우수한 결과를 보여주었으며 KoBART로부터 생성된 요약문을 환용하여 사용자에게 효과적으로 뉴스를 추천하였다.

KoBART와 GSG를 결합한 지능형 한국어 문장 요약 기법 (Intelligent Korean Sentence Summarization Technique Combining KoBART and GSG)

  • 심현솔;박현빈;박지영;신재원;김영종
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 춘계학술발표대회
    • /
    • pp.698-700
    • /
    • 2023
  • 본 논문에서는 한국어 데이터와 모델링, 추가 평가 지표를 통해 Text Summarization 분야에서 한국어로 좋은 성능을 내기 위한 방식을 제안한다. KoBART의 크기를 키우고 PEGASUS의 GSG를 사용하는 KoBART-GSG 모델을 제안한다. 이때 ASR 모델을 사용하여 한국어 데이터를 구축하고 추가 학습을 진행한다. 또한, 생성된 요약문과 원문에서 Attention 기법으로 키워드와 핵심 문장을 추출하여 지능형 텍스트를 구성하는 새로운 방식을 제안한다. ASR Open API와 제안한 방식을 사용하여 오디오 파일을 텍스트로 변환하고 요약하는 강의나 회의 등 학계와 산업에서 사용할 수 있는 서비스를 제공한다.

MAS: BART 와 WebRTC 라이브러리를 이용한 실시간 회의 스크립트화 및 요약 서비스 (MAS: Real-time Meeting Scripting and Summarization Service using BART and WebRTC library)

  • 권기준;고건준;주영환;지정희
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 추계학술발표대회
    • /
    • pp.619-621
    • /
    • 2022
  • COVID-19 사태의 지속화로 재택근무 및 화상 수업의 수요가 증가함에 따라, 화상 회의 서비스에 대한 수요 또한 증가하고 있다. 본 논문은 회의 내용의 텍스트화 및 요약 회의록 생성에 관한 연구를 통해 보다 효율적인 화상 회의 서비스를 제공하고자 한다. WebRTC를 기반으로 화상 회의 서비스를 제공하며, WebSpeech API 를 활용하여 회의 내용을 스크립트화 한다. 회의 스크립트는 BART를 통해 요약본으로 재생성되며, 회의 스크립트와 요약본은 언제든지 열람 및 다운로드가 가능하다. 본 논문은 회의 요약 기능을 제공하는 화상 회의 서비스 MAS (Meeting Auto Summarization)를 제안하며, MAS 의 설계 및 구현 방법을 소개한다.

한국어 문서 요약 기법을 활용한 휘발유 재고량에 대한 미디어 분석 (Media-based Analysis of Gasoline Inventory with Korean Text Summarization)

  • 윤성연;박민서
    • 문화기술의 융합
    • /
    • 제9권5호
    • /
    • pp.509-515
    • /
    • 2023
  • 국가 차원의 지속적인 대체 에너지 개발에도 석유 제품의 사용량은 지속적으로 증가하고 있다. 특히, 대표적인 석유 제품인 휘발유는 국제유가의 변동에 그 가격이 크게 변동한다. 주유소에서는 휘발유의 가격 변화에 대응하기 위해 휘발유 재고량을 조절한다. 따라서, 휘발유 재고량의 주요 변화 요인을 분석하여 전반적인 휘발유 소비 행태를 분석할 필요가 있다. 본 연구에서는 주유소의 휘발유 재고량 변화에 영향을 미치는 요인을 파악하기 위해 뉴스 기사를 활용한다. 첫째, 웹 크롤링을 통해 자동으로 휘발유와 관련한 기사를 수집한다. 둘째, 수집한 뉴스 기사를 KoBART(Korean Bidirectional and Auto-Regressive Transformers) 텍스트 요약 모델을 활용하여 요약한다. 셋째, 추출한 요약문을 전처리하고, N-Gram 언어 모델과 TF-IDF(Term Frequency Inverse Document Frequency)를 통해 단어 및 구 단위의 주요 요인을 도출한다. 본 연구를 통해 휘발유 소비 형태의 파악 및 예측이 가능하다.

대화문 재구조화를 통한 한국어 대화문 요약 (Summarization of Korean Dialogues through Dialogue Restructuring)

  • 김은희;임명진;신주현
    • 스마트미디어저널
    • /
    • 제12권11호
    • /
    • pp.77-85
    • /
    • 2023
  • COVID-19 이후 온라인을 통한 소통이 증가하여 다양한 플랫폼을 기반으로 소통을 위한 대화 텍스트 데이터가 대량으로 축적되고 있다. 텍스트 데이터로부터 유의미한 정보를 추출하기 위한 텍스트 요약에 대한 중요성이 더욱 증가함에 따라 딥러닝을 활용한 추상 요약 연구가 활발하게 이루어지고 있다. 그러나 대화 데이터는 뉴스 기사와 같은 정형화된 텍스트에 비해 누락 및 변형이 많아 대화 상황을 다양한 관점에서 고려해야 하는 특이성이 있다. 특히 어휘 생략과 동시에 내용과 관련 없는 표현 요소들이 대화의 내용을 요약하는 데 방해가 된다. 그러므로 본 연구에서는 한국어 대화 데이터의 특성을 고려하여 발화문을 재구조화하고 KoBART 기반의 사전학습된 텍스트 요약 모델을 파인 튜닝후, 요약문에서 중복 요소를 제거하는 정제 작업을 통해 대화 데이터 요약 성능을 향상시키고자 한다. 발화문을 재구조화하는 방법으로는 발화 순서에 따라 재구조화는 방법과 중심 발화자를 기준으로 재구조화하는 방법을 결합하였다. 대화문 재구조화 방법을 적용한 결과, Rouge-1 점수가 4 정도 향상되었다. 본 연구의 대화 특성을 고려한 재구조화 방법이 한국어 대화 요약 성능 향상에 유의미함을 입증하였다.

한국어 지식 그래프-투-텍스트 생성을 위한 데이터셋 자동 구축 (A Synthetic Dataset for Korean Knowledge Graph-to-Text Generation)

  • 정다현;이승윤;이승준;서재형;어수경;박찬준;허윤아;임희석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.219-224
    • /
    • 2022
  • 최근 딥러닝이 상식 정보를 추론하지 못하거나, 해석 불가능하다는 한계점을 보완하기 위해 지식 그래프를 기반으로 자연어 텍스트를 생성하는 연구가 중요하게 수행되고 있다. 그러나 이를 위해서 대량의 지식 그래프와 이에 대응되는 문장쌍이 요구되는데, 이를 구축하는 데는 시간과 비용이 많이 소요되는 한계점이 존재한다. 또한 하나의 그래프에 다수의 문장을 생성할 수 있기에 구축자 별로 품질 차이가 발생하게 되고, 데이터 균등성에 문제가 발생하게 된다. 이에 본 논문은 공개된 지식 그래프인 디비피디아를 활용하여 전문가의 도움 없이 자동으로 데이터를 쉽고 빠르게 구축하는 방법론을 제안한다. 이를 기반으로 KoBART와 mBART, mT5와 같은 한국어를 포함한 대용량 언어모델을 활용하여 문장 생성 실험을 진행하였다. 실험 결과 mBART를 활용하여 미세 조정 학습을 진행한 모델이 좋은 성능을 보였고, 자연스러운 문장을 생성하는데 효과적임을 확인하였다.

  • PDF

한국어 뉴스 헤드라인의 토픽 분류에 대한 실증적 연구 (An Empirical Study of Topic Classification for Korean Newspaper Headlines)

  • 박제윤;김민규;오예림;이상원;민지웅;오영대
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.287-292
    • /
    • 2021
  • 좋은 자연어 이해 시스템은 인간과 같이 텍스트에서 단순히 단어나 문장의 형태를 인식하는 것 뿐만 아니라 실제로 그 글이 의미하는 바를 정확하게 추론할 수 있어야 한다. 이 논문에서 우리는 뉴스 헤드라인으로 뉴스의 토픽을 분류하는 open benchmark인 KLUE(Korean Language Understanding Evaluation)에 대하여 기존에 비교 실험이 진행되지 않은 시중에 공개된 다양한 한국어 라지스케일 모델들의 성능을 비교하고 결과에 대한 원인을 실증적으로 분석하려고 한다. KoBERT, KoBART, KoELECTRA, 그리고 KcELECTRA 총 네가지 베이스라인 모델들을 주어진 뉴스 헤드라인을 일곱가지 클래스로 분류하는 KLUE-TC benchmark에 대해 실험한 결과 KoBERT가 86.7 accuracy로 가장 좋은 성능을 보여주었다.

  • PDF

문맥 요약을 접목한 한국어 생성형 질의응답 모델 연구 (A Study on Korean Generative Question-Answering with Contextual Summarization)

  • 남정재;김우영;백상덕;이원준;김태용;윤현수;김우주
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.581-585
    • /
    • 2023
  • Question Answering(QA)은 질문과 문맥에 대한 정보를 토대로 적절한 답변을 도출하는 작업이다. 이때 입력으로 주어지는 문맥 텍스트는 대부분 길기 때문에 QA 모델은 이 정보를 처리하기 위해 상당한 컴퓨팅 자원이 필요하다. 이 문제를 해결하기 위해 본 논문에서는 요약 모델을 활용한 요약 기반 QA 모델 프레임워크를 제안한다. 이를 통해 문맥 정보를 효과적으로 요약하면서도 QA 모델의 컴퓨팅 비용을 줄이고 성능을 유지하는 것을 목표로 한다.

  • PDF