• Title/Summary/Keyword: Knowledge-Base Building

Search Result 102, Processing Time 0.029 seconds

A Knowledge Base Editor for Building Expert Systems (전문가 시스템 개발을 위한 Knowledge Base Editor의 구현)

  • 김재희;신동필
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.1
    • /
    • pp.37-45
    • /
    • 1990
  • In this paper, a knowledge base editor is presented as a supporting environment for an expert system building tool, OPS5. The knowledge base editor is especially useful for the fast and easy development of a knowledge base when the OPS5 production language is used. This knowledge base editor has some special facilities such as syntax and type checking, rule browsing and automatic bokkeeping. The syntax and type checking provides the facilities to find syntax and type errors in an edited knowledge base, respectively. The rule browsing facility offers various pattern matching schemes to see the causes and effects of a concerned rule. Automatic bookkeeping keeps the updated date and user name of a rule for the later reference whenever a user adds or changes a rule.

  • PDF

Development of OOKS : a Knowledge Base Model Using an Object-Oriented Database (객체지향 데이터베이스를 이용한 지식베이스 모형(OOKS) 개발)

  • 허순영;김형민;양근우;최지윤
    • Journal of Intelligence and Information Systems
    • /
    • v.5 no.1
    • /
    • pp.13-34
    • /
    • 1999
  • Building a knowledge base effectively has been an important research area in the expert systems field. A variety of approaches have been studied including rules, semantic networks, and frames to represent the knowledge base for expert systems. As the size and complexity of the knowledge base get larger and more complicated, the integration of knowledge based with database technology cecomes more important to process the large amount of data. However, relational database management systems show many limitations in handing the complicated human knowledge due to its simple two dimensional table structure. In this paper, we propose Object-Oriented Knowledge Store (OOKS), a knowledge base model on the basis of a frame sturcture using an object-oriented database. In the proposed model, managing rules for inferencing and facts about objects in one uniform structure, knowledge and data can be tightly coupled and the performance of reasoning can be improved. For building a knowledge base, a knowledge script file representing rules and facts is used and the script file is transferred into a frame structure in database systems. Specifically, designing a frame structure in the database model as it is, it can facilitate management and utilization of knowledge in expert systems. To test the appropriateness of the proposed knowledge base model, a prototype system has been developed using a commercial ODBMS called ObjectStore and C++ programming language.

  • PDF

Toward A Reusable Knowledge Based System

  • Yoo, Young-Dong
    • The Journal of Information Systems
    • /
    • v.3
    • /
    • pp.71-82
    • /
    • 1994
  • Knowledge acquisition, maintenance of knowledge base, and validation and verification of knowledge are the addressed bottlenecks of building successful knowledge based systems. Along with the increment of interesting in the knowledge based systems, the organization needs to develop a new one although it has a similar one. This causes several serious problems including knowledge redundancy and maintenance of knowledge base. This paper present three models of the reusable knowledge base which might be the solution to the above problem. Three models are : 1) multiple knowledge bases for a single AI application, 2) multiple knowledge bases for multiple AI applications, 3) a single knowledge base for multiple AI applications. A new approach to build such a reusable knowledge base in a homogeneous environment is presented. Our model combines the essential object-oriented techniques with rules in a consistent manner. Important aspects of applying object-oriented techniques to AI are discussed (inheritance, encapsulation, message passing), and some potential problems in building an AI application (decomposition technique of knowledge, search time, and heterogeneous environment) are pointed out. The models of a reusable knowledge base provide several amenities : 1) reduce the knowledge redundancy, 2) reduce the effort of maintenance of the knowledge base, 3) reuse the resource of the multiple domain knowledge bases, 4) reduce the development time.

  • PDF

Building a Business Knowledge Base by a Supervised Learning and Rule-Based Method

  • Shin, Sungho;Jung, Hanmin;Yi, Mun Yong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.1
    • /
    • pp.407-420
    • /
    • 2015
  • Natural Language Question Answering (NLQA) and Prescriptive Analytics (PA) have been identified as innovative, emerging technologies in 2015 by the Gartner group. These technologies require knowledge bases that consist of data that has been extracted from unstructured texts. Every business requires a knowledge base for business analytics as it can enhance companies' competitiveness in their industry. Most intelligent or analytic services depend a lot upon on knowledge bases. However, building a qualified knowledge base is very time consuming and requires a considerable amount of effort, especially if it is to be manually created. Another problem that occurs when creating a knowledge base is that it will be outdated by the time it is completed and will require constant updating even when it is ready in use. For these reason, it is more advisable to create a computerized knowledge base. This research focuses on building a computerized knowledge base for business using a supervised learning and rule-based method. The method proposed in this paper is based on information extraction, but it has been specialized and modified to extract information related only to a business. The business knowledge base created by our system can also be used for advanced functions such as presenting the hierarchy of technologies and products, and the relations between technologies and products. Using our method, these relations can be expanded and customized according to business requirements.

The Method to Build Knowledge-Base for User's Preference Retrieval (감성정보검색을 위한 지식베이스 구축방법)

  • Kim, Don-Han
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2008.10a
    • /
    • pp.5-8
    • /
    • 2008
  • This study proposed the Knowledge Base Building method reflecting the user's preferences based on the fuzzy set theory to develop information contents which support pedestrian's navigation. This research evaluated subject's preferences on the commercial spaces set to the hypothetical destination. Also it surveyed the causal relationship between the visual characteristics and the emotional characteristics to propose the methods of Navigation Knowledge Base (NKB). The NKB was composed by three elements; 1.the correlation model between emotional characteristics, 2.the causal relationship between visual characteristics and emotional characteristics, 3.the transformation model between visual characteristics and the physical characteristics.

  • PDF

Electrical Fire Cause Diagnosis System based on Fuzzy Inference

  • Lee, Jong-Ho;Kim, Doo-Hyun
    • International Journal of Safety
    • /
    • v.4 no.2
    • /
    • pp.12-17
    • /
    • 2005
  • This paper aims at the development of an knowledge base for an electrical fire cause diagnosis system using the entity relation database. The relation database which provides a very simple but powerful way of representing data is widely used. The system focused on database construction and cause diagnosis can diagnose the causes of electrical fires easily and efficiently. In order to store and access to the information concerned with electrical fires, the key index items which identify electrical fires uniquely are derived out. The knowledge base consists of a case base which contains information from the past fires and a rule base with rules from expertise. To implement the knowledge base, Access 2000, one of DB development tools under windows environment and Visual Basic 6.0 are used as a DB building tool. For the reasoning technique, a mixed reasoning approach of a case based inference and a rule based inference has been adopted. Knowledge-based reasoning could present the cause of a newly occurred fire to be diagnosed by searching the knowledge base for reasonable matching. The knowledge-based database has not only searching functions with multiple attributes by using the collected various information(such as fire evidence, structure, and weather of a fire scene), but also more improved diagnosis functions which can be easily wed for the electrical fire cause diagnosis system.

A Study on the Development of Causal Knowledge Base Based on Data Mining and Fuzzy Cognitive Map (데이터 마이닝과 퍼지인식도 기반의 인과관계 지식베이스 구축에 관한 연구)

  • Kim, Jin-Sung
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.05a
    • /
    • pp.247-250
    • /
    • 2003
  • Due to the increasing use of very large databases, mining useful information and implicit knowledge from databases is evolving. However, most conventional data mining algorithms identify the relationship among features using binary values (TRUE/FALSE or 0/1) and find simple If-THEN rules at a single concept level. Therefore, implicit knowledge and causal relationships among features are commonly seen in real-world database and applications. In this paper, we thus introduce the mechanism of mining fuzzy association rules and constructing causal knowledge base form database. Acausal knowledge base construction algorithm based on Fuzzy Cognitive Map(FCM) and Srikant and Agrawal's association rule extraction method were proposed for extracting implicit causal knowledge from database. Fuzzy association rules are well suited for the thinking of human subjects and will help to increase the flexibility for supporting users in making decisions or designing the fuzzy systems. It integrates fuzzy set concept and causal knowledge-based data mining technologies to achieve this purpose. The proposed mechanism consists of three phases: First, adaptation of the fuzzy membership function to the database. Second, extraction of the fuzzy association rules using fuzzy input values. Third, building the causal knowledge base. A credit example is presented to illustrate a detailed process for finding the fuzzy association rules from a specified database, demonstration the effectiveness of the proposed algorithm.

  • PDF

Building Information-rich Maps for Intuitive Human Interface Using Networked Knowledge Base

  • Ryu, Jae-Kwan;Kanayama, Chie;Chong, Nak-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1887-1891
    • /
    • 2005
  • Despite significant advances in multimedia transferring technologies in various fields of robotics, it is sometimes quite difficult for the operator to fully understand the context of 3D remote environments from 2D image feedback. Particularly, in the remote control of mobile robots, the recognition of the object associated with the task is very important, because the operator has to control the robot safely in various situations not through trial and error. Therefore, it is necessary to provide the operator with 3D volumetric models of the object and object-related information as well such as locations, shape, size, material properties, and so on. Thus, in this paper, we propose a vision-based human interface system that provides an interactive, information-rich map through network-based information brokering. The system consists of an object recognition part, a 3D map building part, a networked knowledge base part, and a control part of the mobile robot.

  • PDF

Building a Machining Knowledge Base for Intelligent Machine Tools (지능공작기계를 위한 가공 지식의 지식베이스 구성 및 운영)

  • Lee, Seung-Woo;Lee, Hwa-Ki
    • Journal of the Korea Safety Management & Science
    • /
    • v.9 no.5
    • /
    • pp.79-85
    • /
    • 2007
  • Intelligent machines respond to external environments on the basis of decisions that are made by sensing the changes in the environment and analyzing the obtained information. This study focuses on the construction of a knowledge base which enables decision making with that information. Approximately 70% of all errors that occur in machine tools are caused by thermal error. In order to proactive deal with these errors, a system which measures the temperature of each part and predicts and compensates the displacement of each axis has been developed. The system was built in an open type controller to enable machine tools to measure temperature changes and compensate the displacement. The construction of a machining knowledge base is important for the implementation of intelligent machine tools, and is expected to be applicable to the network based intelligent machine tools which look set to appear sooner or later.

A study on the Extraction of Similar Information using Knowledge Base Embedding for Battlefield Awareness

  • Kim, Sang-Min;Jin, So-Yeon;Lee, Woo-Sin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.11
    • /
    • pp.33-40
    • /
    • 2021
  • Due to advanced complex strategies, the complexity of information that a commander must analyze is increasing. An intelligent service that can analyze battlefield is needed for the commander's timely judgment. This service consists of extracting knowledge from battlefield information, building a knowledge base, and analyzing the battlefield information from the knowledge base. This paper extract information similar to an input query by embedding the knowledge base built in the 2nd step. The transformation model is needed to generate the embedded knowledge base and uses the random-walk algorithm. The transformed information is embedding using Word2Vec, and Similar information is extracted through cosine similarity. In this paper, 980 sentences are generated from the open knowledge base and embedded as a 100-dimensional vector and it was confirmed that similar entities were extracted through cosine similarity.