Currently, the Ministry of Employment and Labor is strengthening monitor programs in regards to occupational industrial safety and health act compliance in business operations. However, industrial accidents occur persistently. Therefore, the study strives to diagnose and understand the issues in its educational stature, targeting managing supervisors in large scale shipbuilding industry whose completed the regular safety and health act sessions. This research considered a total of 3,252 employees whose completed theory-based cluster sessions for three months since February, 2016. The group is divided into two categories; 551 participants whose completed 8 hours of training and 2,701 participants whose completed 4 hours of training. Technical statistics were used to measure the knowledge of safety and health, educational environment, curriculum and educational effects on managing supervisors. A t-test was used to analyze the difference between the training hours. The result indicated that the target participants' knowledge on safety and health before the session was 50.24 points average (100 point scale), showing low standards in general. In depth analysis indicated that both 8 hours and 4 hours groups scored lowest in educational methods and communications between the lecturer and participants factors within the educational curriculum category. Meanwhile, transition in knowledge acquirement, work attitude, and work behaviors scored the highest in the analysis, showing a high satisfaction factors in educational effects. Therefore, the improvement in educational time and period can increase the efficacy of the educational programs. Also, theory-based cluster programs based on lectures suggests positive influence in knowledge acquirement and behavioral transitions.
Proceedings of the Korean Society for Emotion and Sensibility Conference
/
2002.05a
/
pp.266-269
/
2002
This paper explores a fundamental study of acquiring the users' KANSEI information regarding the recognition of shape models. Since there are many differences such as background differences and knowledge differences among users, they will produce different evaluations based on their KANSEI even when an identical shape model is presented. Cluster analysis is proved to be available for catching a group tendency and for constructing a mapping relation between a description of the shape model and the HANSEl database. In order to investigate an analogical relation and a mutual influence in our consciousness, first, we made a questionnaire that asked subjects to represent images having different colors and shape cones by using 4 pairs of adjectives (KANSEI words). Next, based on the cluster analysis of the questionnaire using a fuzzy set theory, we proposed a hypothesis showing how the analogical relation and the mutual influence work in our mind while viewing the shape models. Furthermore, how the properties of KANSEI depend on their descriptions was also investigated by virtue of the cluster analysis. This work will be valuable to construct a personal KANSEI database regarding the Shape Model Processing System.
The Journal of the Convergence on Culture Technology
/
v.7
no.3
/
pp.481-486
/
2021
Machine learning algorithms adopt criterion function as a key component to measure the quality of their model derived from data. Cluster analysis also uses this function to rate the clustering result. All the criterion functions have in general certain types of favoritism in producing high quality clusters. These clusters are then described by attributes and their values. Category utility and partition utility play an important role in cluster analysis. These are fully analyzed in this research particularly in terms of how they are related to the favoritism in the final results. In this research, several data sets are selected and analyzed to show how different results are induced from these criterion functions.
Due to the changes in the distribution market, issues related to storage and distribution of agricultural, aquatic and livestock products, and storage and transportation of processed and fresh food are rapidly emerging, and as a result, Cold Chain is naturally receiving attention as one of the logistics services. The purpose of this study is to evaluate the competitiveness of location in the construction of a cold chain cluster centered on the metropolitan area, which has attracted attention in relation to the distribution of cold chains, such as recently refrigerated frozen foods. To this end, this study evaluated the competitiveness of cold chain cluster candidates in the metropolitan area by utilizing the CFPR (Consistent Fuzzy Preference Relations) method that can efficiently extract and quantify expert knowledge. As a result, the location competitiveness was found to be superior to Incheon New Port's hinterland, Gyeonggi South Area (Yongin), Gyeonggi West Area (Gimpo Logistics Complex), and Pyeongtaek Oseong Logistics Complex. In particular, this study extracted the knowledge of refrigerated and refrigerated logistics warehouse operation experts, and conducted detailed competitiveness assessments for cold chain cluster candidates in the metropolitan area, and suggested the optimal cluster candidates. In the future research, it is necessary to classify the questionnaire into the owner, large business group, and public business group, etc., who have the right to purchase and build to secure ownership of the fresh food distribution center.
Purpose: The purpose of this study was to identify the knowledge structure of cancer survivors. Methods: For data, 1099 articles were collected, with 365 keywords as a Noun phrase extracted from the articles and standardized for analyzing. Co-occurrence matrix were generated via a cosine similarity measure, and then the network analysis and visualization using PFNet and NodeXL were applied to visualize intellectual interchanges among keywords. Results: According to the result of the content analysis and the cluster analysis of author keywords from cancer survivors articles, keywords such as 'quality of life', 'breast neoplasms', 'cancer survivors', 'neoplasms', 'exercise' had a high degree centrality. The 9 most important research topics concerning cancer survivors were 'cancer-related symptoms and nursing', 'cancer treatment-related issues', 'late effects', 'psychosocial issues', 'healthy living managements', 'social supports', 'palliative cares', 'research methodology', and 'research participants'. Conclusion: Through this study, the knowledge structure of cancer survivors was identified. The 9 topics identified in this study can provide useful research direction for the development of nursing in cancer survivor research areas. The Network analysis used in this study will be useful for identifying the knowledge structure and identifying general views and current cancer survivor research trends.
Purpose: The purpose of this study was to identify knowledge structure of the Korean Journal of Occupational Health Nursing from 1991 to 2014. Methods: 400 articles between 1991 and 2014 were collected. 1,369 keywords as noun phrases were extracted from articles and standardized for analysis. Co-occurrence matrix was generated via a cosine similarity measure, then the network was analyzed and visualized using PFNet. Also NodeXL was applied to visualize intellectual interchanges among keywords. Results: According to the results of the content analysis and the cluster analysis of author keywords from the Korean Journal of Occupational Health Nursing articles, 7 most important research topics of the journal were 'Workers & Work-related Health Problem', 'Recognition & Preventive Health Behaviors', 'Health Promotion & Quality of Life', 'Occupational Health Nursing & Management', 'Clinical Nursing Environment', 'Caregivers and Social Support', and 'Job Satisfaction, Stress & Performance'. Newly emerging topics for 4-year period units were observed as research trends. Conclusion: Through this study, the knowledge structure of the Korean Journal of Occupational Health Nursing was identified. The network analysis of this study will be useful for identifying the knowledge structure as well as finding general view and current research trends. Furthermore, The results of this study could be utilized to seek the research direction in the Korean Journal of Occupational Health Nursing.
The purpose of this study was to examine the oral health knowledge of maritime police officers, whose job belonged to the cluster of special occupations, in an effort to provide some information on the development of oral health education programs. The subjects in this study were 499 maritime police officers. After a survey was conducted from March to September, 2013, it's found that just 104 respondents(22.8%) had experience of receiving oral health education. In terms of general knowledge, the respondents who received that education were different from the others who didn't in the level of knowledge on the items related to temporomandibular joint(p=0.026), and there were no differences between the two in knowledge of periodontal health. As for prevention-related knowledge, they had a good knowledge of fluorine. Concerning needs for oral health education, 67.1 percent considered oral health professional manpower to be necessary, and 77.9 percent of the respondents who received oral health education gave this reply(p=0.004). Regarding preference for educational content, the right toothbrushing method was most preferred, followed by oral counseling, the use of oral hygiene supplies, the selection of dentifrice, and nutrition/anti-smoking education. The findings of the study suggest that the development of oral health education programs geared toward the cluster of special occupations such as maritime police is required.
As cyber-attacks on Cyber-Physical System (CPS) become more diverse and sophisticated, it is important to quickly detect malicious behaviors occurring in CPS. Since CPS can collect sensor data in near real time throughout the process, there have been many attempts to detect anomaly behavior through normal behavior learning from the perspective of data-driven security. However, since the CPS datasets are big data and most of the data are normal data, it has always been a great challenge to analyze the data and implement the anomaly detection model. In this paper, we propose and evaluate the Clustered Deep One-Class Classification (CD-OCC) model that combines the clustering algorithm and deep learning (DL) model using only a normal dataset for anomaly detection. We use auto-encoder to reduce the dimensions of the dataset and the K-means clustering algorithm to classify the normal data into the optimal cluster size. The DL model trains to predict clusters of normal data, and we can obtain logit values as outputs. The derived logit values are datasets that can better represent normal data in terms of knowledge distillation and are used as inputs to the OCC model. As a result of the experiment, the F1 score of the proposed model shows 0.93 and 0.83 in the SWaT and HAI dataset, respectively, and shows a significant performance improvement over other recent detectors such as Com-AE and SVM-RBF.
Aerospace industry is a combination of high technologies which has several characteristics such as product reliability, precision, light weight, and energy efficiency. Nowadays, each country is trying to invigorating knowledge and information sharing between the companies for the synergy effect of aerospace industry. However, the research and empirical analysis on the vitalization of aerospace industry cluster are insufficient. Therefore, this study aims to firstly classify the supporting functions of government for aerospace industry cluster into five types by analyzing existing literatures and status reports issued by government. Secondly, companies are surveyed on the five classified types of supporting functions by questionnaire. Questionnaire survey responded by 30 aerospace companies in Gyeongnam aerospace industry cluster are analyzed. Quantitative analysis methods were used for statistical analysis. Based on the analysis, improvement directions of government supporting functions are suggested. The results of this study is expected to help policy making for invigorating the aerospace industry cluster.
Journal of The Korean Association For Science Education
/
v.40
no.1
/
pp.41-50
/
2020
Looking at the understanding of scientific concepts from a linguistic perspective, it is very important for students to develop a deep and sophisticated understanding of words used in scientific concept as well as the ability to use them correctly. This study intends to provide the basis for productive knowledge education of scientific words by noting that the foundation of productive knowledge teaching on scientific words is not well established, and by exploring ways to teach the relationship among words that constitute scientific concept in a productive and effective manner. To this end, we extracted the relationship among the words that make up the scientific concept from the text of science textbook by using quantitative text analysis methods, second, qualitatively examined the meaning of the word relationship extracted as a result of each method, and third, we proposed a writing activity method to help improve the productive knowledge of scientific concept words. We analyzed the text of the "Force and motion" unit on first grade science textbook by using four methods of quantitative linguistic analysis: word cluster, co-occurrence, text network analysis, and word-embedding. As results, this study suggests four writing activities, completing sentence activity by using the result of word cluster analysis, filling the blanks activity by using the result of co-occurrence analysis, material-oriented writing activities by using the result of text network analysis, and finally we made a list of important words by using the result of word embedding.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.