• Title/Summary/Keyword: Knockdown Factor

Search Result 143, Processing Time 0.025 seconds

Role of Caveolin-1 in Indomethacin-induced Death of Human Hepato-adenocarcinoma SK-Hep1 Cells

  • Kim, Kyung-Nam;Kang, Ju-Hee;Yim, Sung-Vin;Park, Chang-Shin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.4
    • /
    • pp.143-148
    • /
    • 2008
  • Caveolin-1 (CAV1) is an integral membrane protein that may function as a scaffold for plasma membrane proteins and acts as a tumor suppressor protein. One causative factor of chemotherapy-resistant cancers is P-plycoprotein (P-gp), the product of the multidrug resistance-1 gene (MDR1), which is localized in the caveolar structure. Currently, the interactive roles of CAV1 and MDR1 expression in the death of cancer cells remain controversial. In this study, we investigated the effects of indomethacin on the cell viability and the expression levels of MDR1 mRNA and protein in a CAV1-siRNA-mediated gene knockdown hepatoma cell line (SK-Hep1). Cell viability was significantly decreased in CAV1-siRNA-transfected cells compared with that of control-siRNA-transfected cells. Furthermore, the viability of cells pretreated with CAV1 siRNA was markedly decreased by treatment with indomethacin (400${\mu}$M for 24 h). However, the protein and mRNA levels of MDR1 were unchanged in CAV1-siRNA-transfected cells. These results suggest that CAV1 plays an important role as a major survival enzyme in cancer cells, and indomethacin can sensitively induce cell death under conditions of reduced CAV1 expression, independent of MDR1 expression.

Pitavastatin Regulates Ang II Induced Proliferation and Migration via IGFBP-5 in VSMC

  • Ha, Yu Mi;Nam, Ju-Ock;Kang, Young Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.6
    • /
    • pp.499-506
    • /
    • 2015
  • Angiotensin II (Ang II), a key mediator of hypertensive, causes structural changes in the arteries (vascular remodeling), which involve alterations in cell growth, vascular smooth muscle cell (VSMC) hypertrophy. Ang II promotes fibrotic factor like IGFBP5, which mediates the profibrotic effects of Ang II in the heart and kidneys, lung and so on. The purpose of this study was to identify the signaling pathway of IGFBP5 on cell proliferation and migration of Ang II-stimulated VSMC. We have been interested in Ang II-induced IGFBP5 and were curious to determine whether a Pitavastatin would ameliorate the effects. Herein, we investigated the question of whether Ang II induced the levels of IGFBP5 protein followed by proliferation and migration in VSMC. Pretreatment with the specific Angiotensin receptor type 1 (AT1) inhibitor (Losartan), Angiotensin receptor type 2 (AT2) inhibitor (PD123319), MAPK inhibitor (U0126), ERK1/2 inhibitor (PD98059), P38 inhibitor (SB600125) and PI3K inhibitor (LY294002) resulted in significantly inhibited IGFBP5 production, proliferation, and migration in Ang II-stimulated VSMC. In addition, IGFBP5 knockdown resulted in modulation of Ang II induced proliferation and migration via IGFBP5 induction. In addition, Pitavastatin modulated Ang II induced proliferation and migration in VSMC. Taken together, our results indicated that Ang II induces IGFBP5 through AT1, ERK1/2, P38, and PI3K signaling pathways, which were inhibited by Pitavastatin. These findings may suggest that Pitavastatin has an effect on vascular disease including hypertension.

Overexpression of CXCR4 is significantly associated with cisplatin-based chemotherapy resistance and can be a prognostic factor in epithelial ovarian cancer

  • Li, Jia;Jiang, Kuo;Qiu, Xiuchun;Li, Meng;Hao, Qiang;Wei, Li;Zhang, Wei;Chen, BiLiang;Xin, Xiaoyan
    • BMB Reports
    • /
    • v.47 no.1
    • /
    • pp.33-38
    • /
    • 2014
  • The chemokine receptor 4 (CXCR4) plays an important role in the growth, angiogenesis and metastasis of various cancers, including epithelial ovarian cancer (EOC). However, the correlation between CXCR4 and the clinical response of EOC patients to chemotherapy remains unknown. 124 EOC patients were recruited to assess the relationship between CXCR4 and the response to cisplatin-based chemotherapy. The results showed that patients with a higher CXCR4 expression had a significantly lower chemosensitivity, a poorer progression-free survival and a lower overall survival than those with lower CXCR4 expression. In addition, knockdown of CXCR4 by small interfering RNA suppressed cell proliferation and resulted in G1/S arrest, increased apoptosis and chemosensitivity in both cisplatin-sensitive A2780 cells and cisplatin-resistant cell A2780/cis in vitro. Our data suggest that CXCR4 is one of the key molecules in cisplatin-based chemotherapy for EOC patients and that CXCR4 inhibition is a potential strategy to address the chemoresistance of EOC.

MiR-183-5p induced by saturated fatty acids regulates the myogenic differentiation by directly targeting FHL1 in C2C12 myoblasts

  • Nguyen, Mai Thi;Min, Kyung-Ho;Lee, Wan
    • BMB Reports
    • /
    • v.53 no.11
    • /
    • pp.605-610
    • /
    • 2020
  • Skeletal myogenesis is a complex process that is finely regulated by myogenic transcription factors. Recent studies have shown that saturated fatty acids (SFA) can suppress the activation of myogenic transcription factors and impair the myogenic differentiation of progenitor cells. Despite the increasing evidence of the roles of miRNAs in myogenesis, the targets and myogenic regulatory mechanisms of miRNAs are largely unknown, particularly when myogenesis is dysregulated by SFA deposition. This study examined the implications of SFA-induced miR-183-5p on the myogenic differentiation in C2C12 myoblasts. Long-chain SFA palmitic acid (PA) drastically reduced myogenic transcription factors, such as myoblast determination protein (MyoD), myogenin (MyoG), and myocyte enhancer factor 2C (MEF2C), and inhibited FHL1 expression and myogenic differentiation of C2C12 myoblasts, accompanied by the induction of miR-183-5p. The knockdown of FHL1 by siRNA inhibited myogenic differentiation of myoblasts. Interestingly, miR-183-5p inversely regulated the expression of FHL1, a crucial regulator of skeletal myogenesis, by targeting the 3'UTR of FHL1 mRNA. Furthermore, the transfection of miR-183-5p mimic suppressed the expression of MyoD, MyoG, MEF2C, and MyHC, and impaired the differentiation and myotube formation of myoblasts. Overall, this study highlights the role of miR-183-5p in myogenic differentiation through FHL1 repression and suggests a novel miRNA-mediated mechanism for myogenesis in a background of obesity.

A Functional SNP in the MDM2 Promoter Mediates E2F1 Affinity to Modulate Cyclin D1 Expression in Tumor Cell Proliferation

  • Yang, Zhen-Hai;Zhou, Chun-Lin;Zhu, Hong;Li, Jiu-Hong;He, Chun-Di
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.8
    • /
    • pp.3817-3823
    • /
    • 2014
  • Background: The MDM2 oncogene, a negative regulator of p53, has a functional polymorphism in the promoter region (SNP309) that is associated with multiple kinds of cancers including non-melanoma skin cancer. SNP309 has been shown to associate with accelerated tumor formation by increasing the affinity of the transcriptional activator Sp1. It remains unknown whether there are other factors involved in the regulation of MDM2 transcription through a trans-regulatory mechanism. Methods: In this study, SNP309 was verified to be associated with overexpression of MDM2 in tumor cells. Bioinformatics predicts that the T to G substitution at SNP309 generates a stronger E2F1 binding site, which was confirmed by ChIP and luciferase assays. Results: E2F1 knockdown downregulates the expression of MDM2, which confirms that E2F1 is a functional upstream regulator. Furthermore, tumor cells with the GG genotype exhibited a higher proliferation rate than TT, correlating with cyclin D1 expression. E2F1 depletion significantly inhibits the proliferation capacity and downregulates cyclin D1 expression, especially in GG genotype skin fibroblasts. Notably, E2F1 siRNA effects could be rescued by cyclin D1 overexpression. Conclusion: Taken together, a novel modulator E2F1 was identified as regulating MDM2 expression dependent on SNP309 and further mediates cyclin D1 expression and tumor cell proliferation. E2F1 might act as an important factor for SNP309 serving as a rate-limiting event in carcinogenesis.

Bone Morphogenetic Protein 2-induced MAPKs Activation Is Independent of the Smad1/5 Activation

  • Jun, Ji-Hae;Ryoo, Hyun-Mo;Woo, Kyung-Mi;Kim, Gwan-Shik;Baek, Jeong-Hwa
    • International Journal of Oral Biology
    • /
    • v.34 no.2
    • /
    • pp.115-121
    • /
    • 2009
  • Bone morphogenetic protein (BMP) 2 is a potent osteogenic factor. Although both Smad1/5 and mitogenactivated protein kinases (MAPKs) are activated by BMP2, the hierarchical relationship between them is unclear. In this study, we examined if BMP2-stimulated MAPK activation is regulated by Smad1/5 or vice versa. When C2C12 cells were treated with BMP2, the activation of extracellular signal-regulated kinase (ERK), p38 MAPK and c-Jun-N-terminal kinase was evident within 5 min. The knockdown of both Smad1 and Smad5 by small interfering RNA did not affect the activation of these MAPKs. In addition, neither the overexpression of Smad1 nor Smad5 induced ERK activation. When ERK activation was induced by constitutively active MEK1 expression, the protein level and activation of Smad1 increased. Furthermore, the inhibition of constitutively active BMP receptor type IB-induced ERK activation significantly suppressed Smad1 activation. These results indicate that Smad1/5 activation is not necessary for BMP2-induced MAPK activation and also that ERK positively regulates Smad1 activation.

Long Noncoding RNA MHRT Protects Cardiomyocytes against H2O2-Induced Apoptosis

  • Zhang, Jianying;Gao, Caihua;Meng, Meijuan;Tang, Hongxia
    • Biomolecules & Therapeutics
    • /
    • v.24 no.1
    • /
    • pp.19-24
    • /
    • 2016
  • Acute myocardial infarction (AMI) remains a leading cause of morbidity and mortality worldwide. The exploration of new biomarkers with high sensitivity and specificity for early diagnosis of AMI therefore becomes one of the primary task. In the current study, we aim to detect whether there is any heart specific long noncoding RNA (lncRNA) releasing into the circulation during AMI, and explore its function in the neonatal rat cardiac myocytes injury induced by $H_2O_2$. Our results revealed that the cardiac-specific lncRNA MHRT (Myosin Heavy Chain Associated RNA Transcripts) was significantly elevated in the blood from AMI patients compared with the healthy control ($^*p<0.05$). Using an in vitro neonatal rat cardiac myocytes injury model, we demonstrated that lncRNA MHRT was upregulated in the cardiac myocytes after treatment with hydrogen peroxide ($H_2O_2$) via real-time RT-PCR (qRT-PCR). Furthermore, we knockdowned the MHRT gene by siRNA to confirm its roles in the $H_2O_2$-induced cardiac cell apoptosis, and found that knockdown of MHRT led to significant more apoptotic cells than the non-target control ($^{**}p<0.01$), indicating that the lncRNA MHRT is a protective factor for cardiomyocyte and the plasma concentration of MHRT may serve as a biomarker for myocardial infarction diagnosis in humans AMI.

NELL2 Function in Axon Development of Hippocampal Neurons

  • Kim, Han Rae;Kim, Dong Hee;An, Ji Young;Kang, Dasol;Park, Jeong Woo;Hwang, Eun Mi;Seo, Eun Jin;Jang, Il Ho;Ha, Chang Man;Lee, Byung Ju
    • Molecules and Cells
    • /
    • v.43 no.6
    • /
    • pp.581-589
    • /
    • 2020
  • Neurons have multiple dendrites and single axon. This neuronal polarity is gradually established during early processes of neuronal differentiation: generation of multiple neurites (stages 1-2); differentiation (stage 3) and maturation (stages 4-5) of an axon and dendrites. In this study, we demonstrated that the neuron-specific n-glycosylated protein NELL2 is important for neuronal polarization and axon growth using cultured rat embryonic hippocampal neurons. Endogenous NELL2 expression was gradually increased in parallel with the progression of developmental stages of hippocampal neurons, and overexpression of NELL2 stimulated neuronal polarization and axon growth. In line with these results, knockdown of NELL2 expression resulted in deterioration of neuronal development, including inhibition of neuronal development progression, decreased axon growth and increased axon branching. Inhibitor against extracellular signal-regulated kinase (ERK) dramatically inhibited NELL2-induced progression of neuronal development and axon growth. These results suggest that NELL2 is an important regulator for the morphological development for neuronal polarization and axon growth.

2,3-Dimethoxy-2′-hydroxychalcone ameliorates TNF-α-induced ICAM-1 expression and subsequent monocyte adhesiveness via NF-kappaB inhibition and HO-1 induction in HaCaT cells

  • Kim, Hyejin;Youn, Gi Soo;An, Soo Yeon;Kwon, Hyeok Yil;Choi, Soo Young;Park, Jinseu
    • BMB Reports
    • /
    • v.49 no.1
    • /
    • pp.57-62
    • /
    • 2016
  • Up-regulation of adhesion molecules plays an important role in the infiltration of leukocytes into the skin during the development of various inflammatory skin diseases, such as atopic dermatitis. In this study, we investigated the modulatory effects of 2,3-dimethoxy-2′-hydroxychalcone (DMHC) on tumor necrosis factor (TNF)-α-induced intercellular adhesion molecule-1 (ICAM-1) expression and monocyte adhesiveness, as well as the molecular mechanisms underlying its action in the HaCaT human keratinocyte cell line. Pre-treating HaCaT cells with DMHC significantly suppressed TNF-α-induced ICAM-1 expression and subsequent monocyte adhesiveness. DMHC inhibited TNF-α-induced activation of NF-ᴋB. In addition, DMHC induced HO-1 expression as well as NRF2 activation. Furthermore, HO-1 knockdown using siRNA reversed the inhibitory effect of DMHC on TNF-α-induced ICAM-1 expression and adhesion of monocytes to keratinocytes. These results suggest that DMHC may inhibit TNF-α-induced ICAM-1 expression and adhesion of monocytes to keratinocytes by suppressing the signaling cascades leading to NF-ᴋB activation and inducing HO-1 expression in keratinocytes. [BMB Reports 2016; 49(1): 57-62]

Thymosin Beta4 Regulates Cardiac Valve Formation Via Endothelial-Mesenchymal Transformation in Zebrafish Embryos

  • Shin, Sun-Hye;Lee, Sangkyu;Bae, Jong-Sup;Jee, Jun-Goo;Cha, Hee-Jae;Lee, You Mie
    • Molecules and Cells
    • /
    • v.37 no.4
    • /
    • pp.330-336
    • /
    • 2014
  • Thymosin beta4 (TB4) has multiple functions in cellular response in processes as diverse as embryonic organ development and the pathogeneses of disease, especially those associated with cardiac coronary vessels. However, the specific roles played by TB4 during heart valve development in vertebrates are largely unknown. Here, we identified a novel function of TB4 in endothelial-mesenchymal transformation (EMT) in cardiac valve endocardial cushions in zebrafish. The expressions of thymosin family members in developing zebrafish embryos were determined by whole mount in situ hybridization. Of the thymosin family members only zTB4 was expressed in the developing heart region. Cardiac valve development at 48 h post fertilization was defected in zebrafish TB4 (zTB4) morpholino-injected embryos (morphants). In zTB4 morphants, abnormal linear heart tube development was observed. The expressions of bone morphogenetic protein (BMP) 4, notch1b, and hyaluronic acid synthase (HAS) 2 genes were also markedly reduced in atrio-ventricular canal (AVC). Endocardial cells in the AVC region were stained with anti-Zn5 antibody reactive against Dm-grasp (an EMT marker) to observe EMT in developing cardiac valves in zTB4 morphants. EMT marker expression in valve endothelial cells was confirmed after transfection with TB4 siRNA in the presence of transforming growth factor ${\beta}$ ($TGF{\beta}$) by RT-PCR and immunofluorescent assay. Zn5-positive endocardial AVC cells were not observed in zTB4 morphants, and knockdown of TB4 suppressed TGF-${\beta}$-induced EMT in ovine valve endothelial cells. Taken together, our results demonstrate that TB4 plays a pivotal role in cardiac valve formation by increasing EMT.