• 제목/요약/키워드: Knee Joint Moment

검색결과 152건 처리시간 0.025초

인공 종양대치물을 이용한 사지구제술후의 보행 분석 (Gait Analysis of Patients with Tumor Prosthesis around the Knee)

  • 이상훈;정진엽;김한수;김병성;이한구
    • 대한골관절종양학회지
    • /
    • 제3권1호
    • /
    • pp.18-25
    • /
    • 1997
  • Prosthetic replacement is one of the most common methods of reconstruction after resection of malignant tumor around the knee. Gait analysis provides a relative objective data about the gait function of patients with prosthesis. The purpose of this study was to compare the gait pattern of the patients who underwent limb salvage surgery with prosthesis for distal femur and that of patients with prosthesis for proximal tibia. This study included ten patients (4 males, 6 females, mean age 22.7 years, range 14-36) who underwent a wide resection and Kotz hinged modular reconstruction prosthesis replacement and six normal adult(Control). The site of bone tumor was the distal femur (Group 1) in six patients and proximal tibia (Group 2) in 4 patients. The follow-up period ranged from 15 to 82 months (mean : 33 months). The evaluation consisted of clinical assessment, radiographic assessment, gait analysis using VICON 370 Motion Analysis System. The gait analysis included the linear parameters such as, walking velocity, cadence, step length, stride length, stance time, swing time, single support and double support time and the three-dimensional kinematics (joint rotation angle, velocity of joint rotation) of ankle, knee, hip and pelvis in sagittal, coronal and transverse plane. For the kinetic evaluation, the moment of force (unit: Nm/kg) and power (unit: Watt/kg) of ankle, knee and hip joint in sagittal, coronal and transverse plane. In the linear parameters, cadence, velocity, step time and single support were decreased in both group 1 and group 2 compared with control. Double support decreased in group 2 compared with control significantly(p<.05). In contrast to our hypothesis, there was no significant difference between group 1 and group 2. In Kinematics, we observed significant difference (p<.05) of decreased knee flexion in loading response (G2

  • PDF

근골격 모델을 이용한 대퇴절단환자의 계단보행에 대한 동역학 해석 (Dynamic Analysis of Stair Climbing for the Above-knee Amputee with Musculoskeletal Models)

  • 배태수;김신기;문무성
    • 한국정밀공학회지
    • /
    • 제24권7호
    • /
    • pp.133-138
    • /
    • 2007
  • It is important to understand the characteristics of amputee gait to develop more advanced prostheses. The aim of this study was quantitatively to analyze the stair climbing task for the above-knee amputee with a prosthesis and to predict muscle forces and joint moments at musculoskeletal joints by dynamic analysis. The three-dimensional musculoskeletal model of lower extremities was constructed by gait analysis and transformation software for one above-knee amputee and ten healthy people. The measured ground reaction forces and kinematical data of each joint by gait analysis were used as input data during inverse dynamic analysis. Lastly, dynamic analysis of above-knee amputee during stair climbing were performed using musculoskeletal models. The results showed that summed muscle farces of hip extensor of amputated leg were greater than those of sound leg but the opposite results were revealed at hip abductor and knee flexor of amputated leg. We could also find that the higher moments at hip and knee joint of sound leg were needed to overcome the flexion moment caused by body weight and amputated leg. In conclusion, dynamic analysis using musculoskeletal models may be a useful mean to predict muscle forces and joint moments for specific motion tasks related to rehacilitation therapy..

드롭랜딩 시 높이에 따른 슬개대퇴 압박력의 차이 (The Differences in Patellofemoral Compression Force with Different Height)

  • 조준행;김경훈;문곤성;이성철
    • 한국운동역학회지
    • /
    • 제21권3호
    • /
    • pp.335-343
    • /
    • 2011
  • Patellofemoral pain syndrome is the most common problem involving the knee, accounting for 25% of knee injuries. Repetitive, overuse activities cause increased force at the patellofemoral joint, resulting in pain during flexion and extension activities. Most research have been conducted in exploring the patellofemoral compressive force in gait, squat and lunges, even though in real cases, possibilities in landing exist. The purpose of this study was to compare the differences in patellofemoral compressive force according to two different height. Sixteen collegiate male students(age: 22.25 ${\pm}$ 3.30 yrs, height: 177.25 ${\pm}$ 4.44 cm, weight: 77.50 ${\pm}$ 8.18 kg) were chosen. The subjects performed drop landings in 45 cm, 60 cm. The findings demonstrated that higher height showed peak knee extension moment, quadriceps contraction force, patellofemoral compressive force with increased VGRF. Regarding the patellofemoral joint compressive force, it increased by quadriceps contraction force with knee flexion during landing, yet, it showed no difference in maximal knee flexion. To minimize patellofemoral joint stress and reduce the likelihood of developing PFPS, we recommend that predesigned quadriceps and hip muscle group strengthening are needed during conditioning and training.

Biomechanical Analysis of Injury Factor According to the Change of Direction After Single-leg Landing

  • Kim, Jong-Bin;Park, Sang-Kyoon
    • 한국운동역학회지
    • /
    • 제26권4호
    • /
    • pp.433-441
    • /
    • 2016
  • Objective: The purpose of this study was to understand the injury mechanism and to provide quantitative data to use in prevention or posture correction training by conducting kinematic and kinetic analyses of risk factors of lower extremity joint injury depending on the change of direction at different angles after a landing motion. Method: This study included 11 men in their twenties (age: $24.6{\pm}1.7years$, height: $176.6{\pm}4.4cm$, weight: $71.3{\pm}8.0kg$) who were right-leg dominant. By using seven infrared cameras (Oqus 300, Qualisys, Sweden), one force platform (AMTI, USA), and an accelerometer (Noraxon, USA), single-leg drop landing was performed at a height of 30 cm. The joint range of motion (ROM) of the lower extremity, peak joint moment, peak joint power, peak vertical ground reaction force (GRF), and peak vertical acceleration were measured. For statistical analysis, one-way repeated-measures analysis of variance was conducted at a significance level of ${\alpha}$ <.05. Results: Ankle and knee joint ROM in the sagittal plane significantly differed, respectively (F = 3.145, p = .024; F = 14.183, p = .000), depending on the change of direction. However, no significant differences were observed in the ROM of ankle and knee joint in the transverse plane. Significant differences in peak joint moment were also observed but no statistically significant differences were found in negative joint power between the conditions. Peak vertical GRF was high in landing (LAD) and after landing, left $45^{\circ}$ cutting (LLC), with a significant difference (F = 9.363, p = .000). The peak vertical acceleration was relatively high in LAD and LLC compared with other conditions, but the difference was not significant. Conclusion: We conclude that moving in the left direction may expose athletes to greater injury risk in terms of joint kinetics than moving in the right direction. However, further investigation of joint injury mechanisms in sports would be required to confirm these findings.

착지 시 외부 무게 부하에 따른 남성과 여성의 하지 관절 각속도, 모멘트, 에너지 흡수에 미치는 영향 (Effect of Added Mass between Male and Female on The Lower Extremity Joints Angular Velocity, Moment, Absorb Energy During Drop Landing)

  • 권문석
    • 한국운동역학회지
    • /
    • 제22권3호
    • /
    • pp.325-332
    • /
    • 2012
  • This study aimed to analyze the effects of external load between male and female on angular velocity, moment, and absorbed energy of the lower-extremity joints during drop landing. The study subjects were 9 male($mass=70.82{\pm}4.64kg$, $height=1.71{\pm}0.04m$, $age=24.5{\pm}1.84years$), 9 female($mass=50.14{\pm}4.09kg$, $height=1.61{\pm}0.03m$, $age=23.6{\pm}2.62years$), without any serious musculoskeletal, coordination, balance, or joint/ligament problems for 1 year before the study. The angular velocity, flexion/extension and abduction/adduction moments, and absorbed energy of the lower-extremity joints were compared between the men and women during drop landing under 4 different conditions of external load(0%, 8%, 16%, and 24%) by using two-way repeated ANOVA(p < .05). The women landed with a greater peak angular velocity of the ankle joint, greater peak inversion moment, and lower peak hip-extension moment than the men did, under all 4 conditions. Additionally, the landing characteristics of the women were distinct from those of the men; the women showed a greater peak knee-adduction moment and greater absorbed energy of the knee joint. These differences indicate that anterior cruciate ligament(ACL) strain was greater in the women than in the men and therefore, women may be at a higher potential risk for noncontact injuries of the ACL with an increase in external load.

The Effect of Foot Landing Type on Lower-extremity Kinematics, Kinetics, and Energy Absorption during Single-leg Landing

  • Jeong, Jiyoung;Shin, Choongsoo S.
    • 한국운동역학회지
    • /
    • 제27권3호
    • /
    • pp.189-195
    • /
    • 2017
  • Objective: The aim of this study was to examine the effect of foot landing type (forefoot vs. rearfoot landing) on kinematics, kinetics, and energy absorption of hip, knee, and ankle joints. Method: Twenty-five healthy men performed single-leg landings with two different foot landing types: forefoot and rearfoot landing. A motion-capture system equipped with eight infrared cameras and a synchronized force plate embedded in the floor was used. Three-dimensional kinematic and kinetic parameters were compared using paired two-tailed Student's t-tests at a significance level of .05. Results: On initial contact, a greater knee flexion angle was shown during rearfoot landing (p < .001), but the lower knee flexion angle was found at peak vertical ground reaction force (GRF) (p < .001). On initial contact, ankles showed plantarflexion, inversion, and external rotation during forefoot landing, while dorsiflexion, eversion, and internal rotation were shown during rearfoot landing (p < .001, all). At peak vertical GRF, the knee extension moment and ankle plantarflexion moment were lower in rearfoot landing than in forefoot landing (p = .003 and p < .001, respectively). From initial contact to peak vertical GRF, the negative work of the hip, knee, and ankle joint was significantly reduced during rearfoot landing (p < .001, all). The contribution to the total work of the ankle joint was the greatest during forefoot landing, whereas the contribution to the total work of the hip joint was the greatest during rearfoot landing. Conclusion: These results suggest that the energy absorption strategy was changed during rearfoot landing compared with forefoot landing according to lower-extremity joint kinematics and kinetics.

The Benefits of Stick Walking: Evaluation at Ankle, Knee and Hip Joints

  • ;;박기원;윤훈용;박성하
    • 대한인간공학회지
    • /
    • 제24권4호
    • /
    • pp.63-71
    • /
    • 2005
  • A laboratory study was performed to evaluate the effects of an aid(i.e. stick) on joint loadings. Six healthy young participants were recruited from Virginia Tech student population. Each participant has performed three normal walking and three stick walking trials. Normalized and integrated, ground reaction forces(GRFs) and joint moments were measured at ankle, knee, and hip joints from kinematic and kinetic data. The result suggests that stick walking significantly reduces vertical ground reaction force and joint moments at ankle and knee compared to normal walking.

석문일월무예 음양보법의 숙련성에 따른 보행 패턴의 하지 운동학 및 운동역학적 특성 (A Study of Motor Expertise about Kinematic and Kinetic Characteristics of Lower Extremity in the Seokmun Ilwol Martial Art Yin-yang Bo Gait Pattern)

  • 박복희;김기형
    • 한국운동역학회지
    • /
    • 제24권3호
    • /
    • pp.239-248
    • /
    • 2014
  • The purpose of this study was to quantify kinematic and kinetic characteristics of Yin-yang Bo gait according to their motor expertise, one of the Seokmun Ilwol martial art gait patterns. Yin-yang Bo gait pattern shows initial forefoot contact instead of heel contact, and increased time of stance phase time, internal-external rotation of ankle-knee-hip joints and pelvic. It aims to produce and store the more energy through continuous homeostasis of center of gravity (COG) and performance of stretch-shortening cycle. Some of these characteristics also were similar to the gait modification strategies for reducing knee adduction moment such as toe-out progression, medial thrust, internal rotation of hip joint. To identify the characteristics, four factors of expert Yin-yang Bo gait performance group were compared to that of none expert group; 1) angles of COG displacement and rotation 2) distal joint pre-rotation in internal-external rotation of ankle-knee-hip joints and pelvic, 3) invariability pelvic potential and pelvic segment total energy 4) knee abduction moment. Six healthy(three male) subjects participated in the experiment to perform Yin-yang gait pattern. Three-dimensional and force plate data were collected. Kinematic and kinetic data were compared between two groups using t-tests. Results showed that 1) the peak point of COG internal rotation angle was reduced in expert group, 2) kneeexternal and hip joint -internal and pelvic rotation angle peak frames were more near points in expert group.

여성노인의 태권에어로빅스 12주 훈련 후 몸통지르기 동작시 하지관절의 생체역학적 변화 (Biomechanical Alterations in the Lower limb Joints during the Punching Motion of Elderly Women after 12-Weeks of Taekwonaerobics Training)

  • 유실
    • 한국운동역학회지
    • /
    • 제19권4호
    • /
    • pp.637-645
    • /
    • 2009
  • 이 연구는 여성노인의 태권에어로빅스 12주 훈련 후 앞굽이 몸통지르기 동작시 하지관절의 생체역학적 변화를 구명하는 것이다. 대상자는 여성노인 10명이 참여하였으며 카메라(MCU-240) 7대와 지면반력기(Kist1er-9286AA) 2대를 이용하여 데이터를 수집하였다. 유의수준 .10에서 운동전 후 차이는 다음과 같다. 첫째, 최소 관절각의 변화는 발목의 저측/배측굴곡(왼쪽, $p=0.001^*$), 외번/내번(양쪽, $p=0.009^*$, $p=0.04^*$)과 무릎의 외전/내전(왼쪽, $p=0.04^*$) 및 엉덩이의 내측/외측 회전(양쪽, $p=0.07^*$, $p=0.02^*$)에서 통계적으로 유의하게 나타났다. 둘째, 최대 관절모멘트 변화는 발목관절의 외번/내번 모멘트(양쪽, $p=0.05^*$, $p=0.05^*$), 무릎관절의 외전/내전 모멘트(왼쪽, $p=0.08^*$) 및 엉덩이관절의 내측/외측 회전 모멘트(오른쪽, $p=0.09^*$)가 통계적으로 유의하게 나타났다. 셋째, 최대 관절파워의 변화는 엉덩이관절의 굴곡/신전(양쪽, $p=0.05^*$, $p=0.01^*$)과 내전/외전(양쪽, $p=0.02^*$, $p=0.00^*$) 및 무릎의 내전/외전(왼쪽, $p=0.00^*$) 파워가 통계적으로 유의한 차이를 보였다. 결론적으로 태권에어로빅스 몸통지르기동작이 여성노인들의 하지 관절에 부분적인 생체변화를 일으켰다.

노인의 계단 내려가기 동작 시 계단 높이와 하지 관절 모멘트와의 관계 연구 (An Investigation of the Effect of the Height of Wteps on the Joint Moment of Lower Extremities of the Elderly While Walking Downstairs)

  • 은선덕
    • 한국운동역학회지
    • /
    • 제16권4호
    • /
    • pp.31-38
    • /
    • 2006
  • The purpose of this study was to investigate the effect of changing the steps height on the joint moment of lower extremity in stair-descent activity of elderly persons. Data were collected by 3-D cinematography and force platform. 9 male elderly subjects in the 60s and 70s participated in this study. All subjects performed a stair-descent in four different heights of stairs (10, 14, 18, 22cm) having 5 step staircase. The results were as follows. 1. For the step height of 22cm the maximum. plantarflexion moment was the smallest and the largest for the step height of 14cm. 2. There was not a statistical difference shown for the extension moment of the knee joint for the different height of steps. 3. There was not a statistical difference shown for the flexion moment of the hip joint for the varying height of steps but on average for the 18cm step this increased rapidly. 4. The smallest maximum. value for inversion moment was revealed for the step height of 10cm and this increased significantly for the step height of 22cm. 5. The smallest maximum. value for abduction moment of the hip joint was revealed for the step height of 10cm and this increased significantly for the step height of 22cm. 6. There was no significant difference shown for the maximum. abduction moment for the hip joint. The main conclusion is that there is a huge difference in the moment of the lower extremities for the elderly while walking down a stairs with a step height above 18 cm and that this moment increased or decreased rapidly under a condition of step height being 22cm. With the results from this research and related research of elderly walking upstairs it can be shown that the step height has a large role in the safety for the elderly.