• Title/Summary/Keyword: Knee Joint Angle

Search Result 351, Processing Time 0.022 seconds

Comparison of the kinematic analysis of grand battement Jeté á la seconde in center between skilled and unskilled ballet majors (발레 숙련도에 따른 센터에서 Grand Battement Jeté á la seconde 동작의 운동학적 비교 분석)

  • Youm, Chang-Hong;Park, Young-Hoon;Seo, Kook-Woong;Yang, Chung-Mo
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.2
    • /
    • pp.153-166
    • /
    • 2004
  • The purpose of this study was to investigate time of the phase, angle of the right ankle, knee, and hip joint, lateral angle of the trunk, mediolateral displacement of COM, and vertical displacement of COM between two groups while executing grand battement $jet{\acute{e}}$ $\acute{a}$ la seconde in a center exercise setting through 3D video analysis. The subjects participated in this study were skilled and unskilled 6 female ballet majors in Busan, respectively. The conclusions are as follows: 1. The time of the phase 2 was faster than P3. It shows a significant difference(p<.05) for P1 and P4 between skilled and unskilled groups 2. The angle of He right ankle joint has a significant difference(p<.05) at E4 between skilled and unskilled groups. The angle of the right knee joint has no significant difference at all events between skilled and unskilled groups. The angle of the right hip joint has a significant difference(p<.001) at E3 between skilled and unskilled groups. 3. The lateral angle of the trunk has a significant difference(p<.05) at E1 and at E5 between skilled and unskilled groups. The skilled group of the lateral angle of the trunk was lower than the unskilled group. However the skilled group's lateral angle of the trunk was bigger than the unskilled group at E3. It has significant difference(p<.001) at E3 between skilled and unskilled groups. 4. The mediolateral displacement of COM has no significant difference at all events between skilled and unskilled groups. The vertical displacement of COM has a significant difference(p<.01) at E3 between skilled and unskilled groups.

3-D Kinematics Comparative Analysis of Penalty Kick between Novice and Expert Soccer Players (축구 페널티킥에서 초보자와 숙련자의 3차원 운동학적 비교)

  • Shin, Je-Min
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.4
    • /
    • pp.13-24
    • /
    • 2005
  • The purpose of this study was to compare kinematic data between experts and novices, and identify difference kinematic parameters changing direction to kick in penalty kick of soccer play. Novice subjects were 5 high school students Who has never been experienced a soccer player, and expert subjects were 5 competitive high school soccer players. The 3-d angle was calculated by Euler's Angle by inertial axis and local axis with three-dimensional cinematography. Kinematic parameters in this study consisted of angles of knee joints, hip joints, lower trunk and upper trunk when the support foot was contacted on ground and kicking foot impacted the ball. The difference of angle of knee joints in the flexion/extension was insignificantly showed below $4{\sim}9^{\circ}$ in groups and directions of ball at the time of support and impact. But the difference of angle of hip joint was significant in groups and directions of ball at the time of support and impact. Specially the right hip joint of experts were more flexed about $12^{\circ}$($43.99{\pm}6.17^{\circ}$ at left side, $31.87{\pm}4.49^{\circ}$ at right side), less abducted about $10^{\circ}$ ($-31.27{\pm}4.49^{\circ}$ at left side, $-41.97{\pm}6.67^{\circ}$ at right side) at impact when they kicked a ball to the left side of goalpost. The difference of amplitude angle in the trunk was significantly shown at upper trunk not lower trunk. The upper trunk was external rotated about $30^{\circ}$ (novice' angle was $-16.3{\pm}17.08^{\circ}$, expert's angle was $-43.73{\pm}12.79^{\circ}$) at impact. Therefore the significant difference of kinematic characteristics could be found at the right hip joint and the upper trunk at penalty kick depending on the direction of kicking.

Kinematical Analysis of Heel-Brake Stop in Inline Skate (인라인 스케이트(Inline Skate) 힐 브레이크(Heel-Brake) 정지에 관한 운동학적 분석)

  • Han, Jae-Hee;Lim, Yong-Kyu
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.2
    • /
    • pp.11-20
    • /
    • 2005
  • This study has a purpose on contributing to apprehend safe and right way to stop to the inline skate beginners and to the instructors who teaches line skating on the basis for the result of the kinematical analysis on Heel brake stop movement of the inline skate, focusing on the displacement on COG, angle displacement of ankle joint, angle displacement of knee joint, angle displacement of hip joint, using a 3D image method by DLT. To achieve this goal, we analysed the kinematical factor of the 3 well-trained inline skating instructors and obtained the following results. 1. During the movement of heel-brake stop, when strong power was given to a stable and balanced stop and the lower limbs, if the physical centroid is lowered the stability increases, and if it is placed high from the base surface, as the stability decreases compared to the case of low physical centroid, we should make a stop by placing a physical centroid in the base surface and lowering the hight of physical centroid. 2. To make a stable and balanced stop and to provide a strong power to the lower limbs, it is advisable to make a stop by decreasing an angle displacement of ankle joint during a "down" movement. In case of the left ankle joint, in all events and phases the dorsiflexion angle showed a decrease. Nevertheless, in the case of the right ankle joint, the dorsiflexion angle shows an increase after a slight decrease. The dorsiflexion angle displacement of ankle joint can be diminished because of the brake pad of the rear axis frame of the right side inline skate by raising a toe, but cannot be more decreased if certain degree of an angle is made by a brake pad touching a ground surface. To provide a power to a brake pad, it is recommended to place a power by lowering a posture making the dorsiflexion angle of the left ankle joint relatively smaller than that of the right ankle. 3. To make a stable and balanced stop and to add a power to a brake pad, the power must be given to the lower limbs in lowering the hight of physical centroid. For this, it is recommended to make a down movement by decreasing the flexion angle of a knee joint and it is necessary to make a down movement by a regular decrease of the angle displacement of knee joint rather than a swift down movement in every event and phase. 4. The right angle displacement of hip joint is made by lowering vertically the hight of physical centroid as leaning slightly forward. If too narrow angle displacement of hip joint is made by leaning forward too much, the balance is lost during the stop by placing the center in front. To make a stable and balance stop and to place a strong power to the lower limbs, it is recommendable to make a narrow angle by lower the hip joint angle. However, excessive leaning of the upper body to make the angle too narrow, can cause an instable stop and loss of physical centroid. After this study, it is considered to assist the kinematical understanding during the heel brake stop movement of the inline skate, and, to present basic data in learning a method of stable and balanced stop for the inline skating beginners or for the inline skate instructors in the present situation of the complete absence of the study in inline skating.

Development of Leg Stiffness Controllable Artificial Tendon Actuator (LeSATA®) Part I - Gait Analysis of the Metatarsophalangeal Joint Tilt Angles Soonhyuck - (하지강성 가변 인공건 액추에이터(LeSATA®)의 개발 Part I - Metatarsophalangeal Joint Tilt Angle의 보행분석 -)

  • Han, Gi-Bong;Eo, Eun-Kyung;Oh, Seung-Hyun;Lee, Soon-Hyuck;Kim, Cheol-Woong
    • Transactions of the KSME C: Technology and Education
    • /
    • v.1 no.2
    • /
    • pp.153-165
    • /
    • 2013
  • The established gait analysis studies have regarded leg as one single spring. If we can design a knee-ankle actuating mechanism as a primary actuator for supporting knee extension, it might be possible to revolutionary store or release elastic strain energy, which is consumed during the gait cycle, and as a result leg stiffness is expected to increase. An ankle joint actuating mechanism that stores and releases the energy in ankle joint is expected to support and solve excessive artificial leg stiffness caused by the knee actuator (primary actuator) to a reasonable extent. If unnecessary kinematic energy is released with the artificial speed reduction control designed to prevent increase in gait speed caused by increase in time passed, it naturally brings question to the effectiveness of the actuator. As opposed to the already established studies, the authors are currently developing knee-ankle two actuator system under the concept of increasing lower limb stiffness by controlling the speed of gait in relative angular velocity of the two segments. Therefore, the author is convinced that compensatory mechanism caused by knee actuating must exist only in ankle joint. Ankle joint compensatory mechanism can be solved by reverse-examining the change in metatarso-phalangeal joint (MTPJ) tilt angle (${\theta}_1=0^{\circ}$, ${\theta}_2=17^{\circ}$, ${\theta}_3=30^{\circ}$) and the effect of change in gait speed on knee activity.

Relationship between lower limb alignment and knee adduction moment during ambulation in the healthy elderly (노인의 하지 정렬 상태와 보행 시 슬관절 내전 모멘트 특성)

  • 조유미;홍정화;문무성
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.24-24
    • /
    • 2003
  • For the elderly, achieving a close-to-normal ambulation is important for activities of daily life. Recent researches of SE(Silver Engineering) restoring physical ability would help the elderly by developing the advanced gait assisting devices and orthoses. For the applications using the advanced technologies, the gait characteristics of the elderly must be understood. However, a few studies were performed to investigate the physiological or pathological gaits. The purpose of this study is to provide the gait analysis data and also to investigate relationships between alignment of the lower limb, foot progression angle and knee joint moments in the healthy elderly. By participating a total of 20 healthy elderly persons in this study, the following facts were found: 1) Cadence showed 114.8 steps/min, gait speed showed 1.05 m/s, time per a stride showed 1.06 sec, time per a step showed 0.53 sec, single-supporting phase was 0.41 sec, double-supporting phase was 0.24 sec, stride length was 1.04m, Step length was 0.56m; 2) The maximum knee flexion angle through swing phase showed left 46.82$^{\circ}$, right 40.19$^{\circ}$ and the maximum knee extension angle showed left -1.32$^{\circ}$, right 2.01$^{\circ}$. Knee varus showed left 26.90$^{\circ}$, right 30.93$^{\circ}$; 3) The maximum knee flexion moment showed left 0.363 Nm/kg, right 0.464 Nm/kg, The maximum knee extension moment showed left 0.389 Nm/kg, right 0.463 Nm/kg. The maximum knee adduction moment showed left 0.332 Nm/kg, right 0.379 Nm/kg. The maximum internal rotational moment showed left 0.13 Nm/kg, right 0.140 Nm/kg; 4) The subjects who had varus alignment of the lower extremity had statistically higher in knee adduction moment in mid stance phase; and 5) The subjects who had large foot progression angle had statistically lower in knee adduction moment in late stance phase.

  • PDF

Immediate Effect of Hip Hinge Exercise Stretching on Flexibility of Lower Limb, Pelvic Tilting Angle, Proprioception and Dynamic Balance in Individual with Hamstring Tightness

  • Jung, Myeongeun;Kim, Namwoo;Lee, Yongwoo
    • Physical Therapy Rehabilitation Science
    • /
    • v.11 no.2
    • /
    • pp.259-268
    • /
    • 2022
  • Objective: The purpose of this study was to measure the immediate effect of hip hinge exercise stretching on hamstring flexibility, pelvic tilting angle, proprioception, and dynamic balance in individual with tightness of the hamstring. Design: A randomized controlled trial. Methods: A total of 35 healthy young adults (27 males, 8 females) volunteered for this study and randomly divided into three groups (Hip hinge exercise stretching group, passive stretching group, and PNF stretching group). The hamstring flexibility, pelvic tilting angle, knee joint proprioception, dynamic balance was conducted for 3 times. In order to evaluate the hamstring flexibility, the active knee extension test was performed. Forward bending test was performed to examine pelvic tilting angle.The proprioception was tested by the joint position sense test and dynamic balance was evaluated by Y balance test. Results: The hamstring flexibility, pelvic tilting angle and dynamic balance were significantly improved between three groups before and after intervention (p<0.05). Dynamic balance was significantly difference between the three groups in the posterolateral direction (p<0.05). Conclusions: This study result showed that hip hinge exercise stretching was the most effective method for increasing hamstring flexibility, pelvic tilting angle and dynamic balance. In addition, it is necessary to study whether hamstring stretching is effective in low back pain patient with hamstrings tightness.

Analysis of the Differences of the Shock Attenuation Strategy between Double-leg and Single-leg Landing on Sagittal Plane using Statistical Parametric Mapping (Statistical Parametric Mapping을 이용한 시상면에서의 양발 착지와 외발 착지의 전략 차이)

  • Ha, Sunghe;Park, Sang-Kyoon;Lee, Sae Yong
    • Korean Journal of Applied Biomechanics
    • /
    • v.29 no.4
    • /
    • pp.255-261
    • /
    • 2019
  • Objective: The purpose of this study was to investigate differences of shock attenuation strategies between double-leg and single-leg landing on sagittal plane using statistical parametric mapping. Method: Nine healthy female professional soccer players (age: 24.0±2.5 yrs, height: 164.9±3.3 cm, weight: 55.7±6.6 kg, career: 11.2±1.4 yrs) were participated in this study. The subjects performed 10 times of double-leg and single-leg landing from the box of 30 cm height onto force plates respectively. The ground reaction force, angle, moment, angular velocity, and power of the ankle, knee, and hip joint on sagittal plane was calculated from initial contact to maximum knee flexion during landing phase. Statistical parametric mapping was used to compare the biomechanical variables of double-leg and single-leg landing of the dominant leg throughout the landing phase. Each mean difference of variables was analyzed using a paired t-test and alpha level was set to 0.05. Results: For the biomechanical variables, significantly increased vertical ground reaction force, plantarflexion moment of the ankle joint, negative ankle joint power and extension moment of the hip joint were found in single-leg landing compared to double-leg landing (p<.05). In addition, the flexion angle and angular velocity of the knee and hip joint in double-leg landing were observed significantly greater than single-leg landing, respectively (p<.05). Conclusion: These findings suggested that negative joint power and plantarflexion moment of the ankle joint can contribute to shock absorption during single-leg landing and may be the factors for preventing the musculoskeletal injuries of the lower extremity by an external force.

Influence on Intra-limb Coordination in Individuals Wearing a Knee Extension Constraint Brace during Walking (무릎 신전 제한형 보조기 착용이 보행 시 하지 내 협응에 미치는 영향)

  • Chang, Yoonhee;Jeong, Bora;Kang, Sungjae;Ryu, Jeicheong;Kim, Gyu Seok;Mun, Museong;Ko, Chang-Yong
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.10 no.3
    • /
    • pp.207-214
    • /
    • 2016
  • The aim of this study was to evaluate Influence on intra-limb coordination in individuals wearing knee brace during walking. Seven healthy male adults ($32.3{\pm}2.7$ years old, $175.2{\pm}3.8cm$, $76.2{\pm}8.7kg$) participated. They wore knee brace or didn't wear any knee brace and were asked to walk along a 10 m long walkway. Spatiotemporal parameters, angles of the lower limbs, and intra-limb continuous relative phase (CRP) were measured and calculated. No differences of spatiotemporal parameters were shown (all p > 0.05). There were no changes in the angle and its range of motion (ROM) in the hip for the subjects as wearing knee brace, while ROM ($65.5{\pm}3.7^{\circ}$ vs. $60.5{\pm}3.5^{\circ}$, p < 0.05) of the angle and maximum flexion angles (stance: $31.9{\pm}4.6$ vs. $25.6{\pm}5.5$, swing: $76.7{\pm}3.1$ vs. $68.9{\pm}3.4$, all p < 0.05) in the knee significantly decreased. No changes in ROM of angle in the ankle were shown, whereas maximum dorsiflexion decreased ($22.4{\pm}2.6$ vs. $19.2{\pm}2.1$, p < 0.05) and maximum plantarflexion increased ($9.5{\pm}3.0$ vs. $15.7{\pm}2.2$, p<0.05). There were no changes in most of CRP between joints. CRP between the hip and knee joints decreased ($93.0{\pm}7.8$ vs, $84.7{\pm}4.9$, p < 0.05). Most of CRP standard deviation increased (between the hip and ankle joint during swing: $25.1{\pm}6.7$ vs. $32.4{\pm}1.9$, between the knee and ankle joint during stance: $46.0{\pm}12.9$ vs. $80.1{\pm}31.1$, between the knee and ankle joint during swing: $34.5{\pm}4.1$ vs. $37.6{\pm}3.1$, all p < 0.05). These results indicated that wearing knee brace affected joint angle and intra-limb coordination, but less affected gait features.

Effects of Landing Height and Knee Joint Muscle Fatigue on Movement of the Lower Extremity during Cutting After Landing (착지 높이와 무릎관절 근육 피로가 착지 후 방향 전환 동작 시 하지관절의 움직임에 미치는 영향)

  • Kim, You-Kyung;Youm, Chang-Hong
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.3
    • /
    • pp.311-322
    • /
    • 2015
  • Objective : The purpose of this study was to investigate the effects of landing height and knee joint muscle fatigue on the movement of the lower extremity during cutting after landing. Method : Subjects included 29 adults (age: $20.83{\pm}1.56years$, height: $172.42{\pm}9.51cm$, weight: $65.07{\pm}10.18kg$). The subjects were asked to stand on their dominant lower limb on jump stands that were 30 and 40 cm in height and jump from each stand to land with the dominant lower limb on a force plate making a side step cutting move at a $45^{\circ}$ angle with the non-dominant lower limb. The fatigue level at 30% of the knee extension peak torque using an isokinetic dynamometer. Results : The results showed that the difference of landing height increased maximum range of motion and angular velocity of hip, knee, and ankle joints in the sagittal plane, and in the angular velocity of motion of the hip joint in the sagittal plane. The maximum range of motion of the knee joint in the sagittal plane and the frontal plane decreased on landing from both heights after the fatigue exercise. The angular velocity of the hip joint in the sagittal plane, and the maximum range of motion of the hip joint in the transverse plane decreased for both landing heights after the fatigue exercise. The angular velocity of the hip joint in the frontal plane decreased for the 30 cm landing height after the fatigue exercise. On the other hand, the angular velocity and maximum range of motion of the ankle joint in the sagittal plane for both landing heights, and the angular velocity and maximum range of motion of the ankle joint in the frontal plane increased on landing from the 40 cm height after the fatigue exercise. Conclusion : Different landing heights of 30 and 40 cm and 30% fatigue of peak torque of knee extensor found a forefoot and stiff landing strategy, when cutting after landing. These results might be due to decline in the shock absorption capability of the knee joint and the movement capability related to cutting while increasing the contribution of the ankle joint, which may cause increased ankle joint injuries.

Influence of Anticipation on Landing Patterns during Side-Cutting Maneuver in Female Collegiate Soccer Players

  • Park, Eun-Jung;Lee, Jung-Ho;Ryue, Jae-Jin;Sohn, Ji-Hoon;Lee, Ki-Kwang
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.4
    • /
    • pp.391-395
    • /
    • 2011
  • To investigate the anticipatory effect on landing patterns during side-cutting maneuver, thirteen healthy female elite college soccer players participated in this study. Three-dimensional knee kinematics, effective mass and correlation between both these were measured and analyzed using a motion analysis and force plates. Each testing session included anticipated tasks, $45^{\circ}$ side-cutting tasks (AC), followed by a set of unexpected side-cutting (UC) in a random order. Knee flexion/extension, valgus/varus and internal/external rotation angles and effect mass were compared by using paired t-test. Also, correlation analysis was performed to identify the relationship between knee angles and effective mass. Effective mass during UC was greater than that during AC. Effective mass and maximum knee flexion angle were positively correlated during AC and not during UC. Based on the relationship between effective mass and knee flexion angle in AC, shock absorption can be controlled by knee joint flexion in pre-predicted movement condition. However, effective mass can not be controlled by knee flexion in UC condition. The unexpected load affects were more irregular on the knee joint, which may be one of the injury mechanisms of anterior cruciate ligament (ACL) in female soccer players.