• Title/Summary/Keyword: Klein-Gordon-Maxwell system

Search Result 1, Processing Time 0.014 seconds

EXISTENCE AND MULTIPLICITY OF NONTRIVIAL SOLUTIONS FOR KLEIN-GORDON-MAXWELL SYSTEM WITH A PARAMETER

  • Che, Guofeng;Chen, Haibo
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.3
    • /
    • pp.1015-1030
    • /
    • 2017
  • This paper is concerned with the following Klein-Gordon-Maxwell system: $$\{-{\Delta}u+{\lambda}V(x)u-(2{\omega}+{\phi}){\phi}u=f(x,u),\;x{\in}\mathbb{R}^3,\\{\Delta}{\phi}=({\omega}+{\phi})u^2,\;x{\in}\mathbb{R}^3$$ where ${\omega}$ > 0 is a constant and ${\lambda}$ is the parameter. Under some suitable assumptions on V (x) and f(x, u), we establish the existence and multiplicity of nontrivial solutions of the above system via variational methods. Our conditions weaken the Ambrosetti Rabinowitz type condition.