• Title/Summary/Keyword: Kirchhoff plate element

Search Result 40, Processing Time 0.025 seconds

Elastic analysis of arbitrary shape plates using Meshless local Petrov-Galerkin method

  • Edalati, H.;Soltani, B.
    • Wind and Structures
    • /
    • v.27 no.4
    • /
    • pp.235-245
    • /
    • 2018
  • In this study the stress analysis of orthotropic thin plate with arbitrary shapes for different boundary conditionsis investigated. Meshfreemethod is applied to static analysis of thin plates with various geometries based on the Kirchhoff classical plate theory. According to the meshfree method the domain of the plates are expressed through a set of nodes without using mesh. In this method, a set of nodes are defined in a standard rectangular domain, then via a third order map, these nodes are transferred to the main domain of the original geometry; therefore the analysis of the plates can be done. Herein, Meshless local Petrov-Galerkin (MLPG) as a meshfree numerical method is utilized. The MLS function in MLPG does not satisfy essential boundary conditions using Delta Kronecker. In the MLPG method, direct interpolation of the boundary conditions can be applied due to constructing node by node of the system equations. The detailed parametric study is conducted, focusing on the arbitrary geometries of the thin plates. Results show that the meshfree method provides better accuracy rather than finite element method. Also, it is found that trend of the figures have good agreement with relevant published papers.

Estimation of sound radiation for a flat plate by using BEM and vibration experiment (경계요소 해석과 진동 실험을 이용한 단순 평판의 방사 음향 예측)

  • 김관주;김정태;최승권
    • Journal of KSNVE
    • /
    • v.10 no.5
    • /
    • pp.843-848
    • /
    • 2000
  • BEA(Boundary Element Analysis) based on Kirchhoff-Helmholtz integral equation is widely used in the prediction of sound radiation problems of vibrating structures. Accurate estimation of sound pressure distribution by BEA can be [possible if and only if dynamic behavior of the relating structure was described correctly. Another plausible method of sound radiation phenomena could be the NAH(Nearfield Acoustic Holography) method. NAH also based on the identical governing equation with BEA could be one of the best acoustic imaging schemes but it has disadvantages of the complexity of measurement and of the need of large amount of measuring points. In this paper, modal expansion method is presented for taking accurate dynamic data of the structures efficiently. This method makes use of vibration principle an arbitrary dynamic behavior of the structure is described by the summation of that structures mode shapes which can be calculated by FEA easily and accurately. Sound pressure field from a vibration flat plate is calculated using the combination of vibration signal on that flat plate from experiment, and of the natural mode shapes form FEA. When sound pressure field from vibration signal is calculated the importance of the phase information was emphasized.

  • PDF

Finite Element Analysis for Time Response of a Flexible Spinning Disk with Translating Misalignment (회전축 정렬불량을 가지는 유연회전디스크의 유한요소법을 이용한 시간응답해석)

  • Heo, Jin-Uk;Jeong, Jin-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.9
    • /
    • pp.1905-1913
    • /
    • 2002
  • Using the finite element method, this study investigates the dynamic time responses of a flexible spinning disk of which axis of rotation is misaligned with the axis of symmetry. The misalignment between the axes of symmetry and rotation is one of the major vibration sources in optical disk drives such as CD-ROM, CD-R, CD-RW and DVD drives. Based upon the Kirchhoff plate theory and the von-Karman strain theory, three coupled equations of motion for the misaligned disk are obtained: two of the equations are for the in-plane motion while the other is for the out-of-plane motion. After transforming these equations into two weak forms for the in-plane and out-of-plane motions, the weak forms are discretized by using newly defined annular sector finite elements. Applying the generalized-$\alpha$ time integration method to the discretized equations, the time responses and the displacement distributions are computed and then the effects of the misalign ment on the responses and the distributions are analyzed. The computation results show that the misalignment has an influence on the magnitudes of the in-plane displacements and it results in the amplitude modulation or the beat phenomenon in the time responses of the out-of-plane displacement.

Parameter Analysis of Sound Radiation for Bridges Under Moving Vehicles (이동차량하중에 의해 발생되는 교량진동음압의 매개변수 분석)

  • Lee Yong-Seon;Kim Sang-Ryo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.772-777
    • /
    • 2006
  • An acoustic finite element model of a bridge is developed to evaluate the noise generated by the traffic-induced vibration of the bridge. The dynamic response of a multi-girder bridge, modeled by a 3-dimensional frame element model, is analyzed with a 3-axle(8DOF) truck model and a 5-axle(l3DOF) semi-trailer. The flat plate element is used to analyze the acoustic pressure due to the fluid-structure interactions between the vibrating surface and contiguous acoustic fluid medium. The radiation fields of noise with a specified distribution of vibrating velocity and pressure on the structural surface are also computed using the Kirchhoff-Helmholtz integral. In an attempt to illustrate the influence of the structural vibration noise of a bridge to total noise level around the bridge, the random function is used to generate the vehicle noise source including the engine noise and the rolling noise interacting between the road and tire. Among the diverse parameters affecting the dynamic response of bridge, the vehicle velocity, the vehicle weight, the spatial distribution of the road surface roughness, the stiffness degradation of the bridge and the variation of the air temperature changing the air density are found to be the main factors that increase the level of vibration noise. Consequently, The amplification rate of noise increases with the traveling speed and the vehicle weight.

  • PDF

Finite Element Analysis of Unbalance Response of a High Speed Flexible Polygon Mirror Scanner Motor Considering the Flexibility of Supporting Structure (지지구조의 유연성을 고려한 고속 유연 폴리곤 미러 스캐너 모터의 유한 요소 불평형 응답 해석)

  • Jung, Kyung-Moon;Seo, Chan-Hee;Kim, Myung-Gyu;Jang, Gun-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.859-865
    • /
    • 2007
  • This paper presents a method to analyze the unbalance response of a high speed polygon mirror scanner motor supported by sintered bearing and flexible supporting structures by using the finite element method and the mode superposition method. The appropriate finite element equations for polygon mirror are described by rotating annular sector element using Kirchhoff plate theory and von Karman non-linear strain, and its rigid body motion is also considered. The rotating components except for the polygon mirror are modeled by Timoshenko beam element including the gyroscopic effect. The flexible supporting structures are modeled by using a 4-node tetrahedron element and 4-node shell element with rotational degrees of freedom. Finite element equations of each component of the polygon mirror scanner motor and the flexible supporting structures are consistently derived by satisfying the geometric compatibility in the internal boundary between each component. The rigid link constraints are also imposed at the interface area between sleeve and sintered bearing to describe the physical motion at this interface. A global matrix equation obtained by assembling the finite element equations of each substructure is transformed to a state-space matrix-vector equation, and both damped natural frequencies and modal damping ratios are calculated by solving the associated eigenvalue problem by using the restarted Arnoldi iteration method. Unbalance responses in time and frequency domain are performed by superposing the eigenvalues and eigenvectors from the free vibration analysis. The validity of the proposed method is verified by comparing the simulated unbalance response with the experimental results. This research also shows that the flexibility of supporting structures plays an important role in determining the unbalance response of the polygon mirror scanner motor.

  • PDF

Limit analysis of plates-a finite element formulation

  • Capsoni, Antonio;Corradi, Leone
    • Structural Engineering and Mechanics
    • /
    • v.8 no.4
    • /
    • pp.325-341
    • /
    • 1999
  • A procedure for the computation of the load carrying capacity of perfectly plastic plates in bending is presented. The approach, based on the kinematic theorem of limit analysis, requires the evaluation of the minimum of a convex, but non-smooth, function under linear equality constraints. A systematic solution procedure is devised, which detects and eliminates the finite elements which are predicted as rigid in the collapse mechanism, thus reducing the problem to the search for the minimum of a smooth and essentially unconstrained function of nodal velocities. Both Kirchhoff and Mindlin plate models are considered. The effectiveness of the approach is illustrated by means of some examples.

Elastic Stability of Perforated Concrete Shear Wall (개구부를 갖는 콘크리트 전단벽의 탄성안정)

  • 김준희;김순철
    • Computational Structural Engineering
    • /
    • v.11 no.1
    • /
    • pp.251-259
    • /
    • 1998
  • Concrete shear wall with opening is modeled as a rectangular thin plate. The stability analysis results are presented by the buckling coefficient, k, for two different boundary conditions. The other parameters whose variation have been considered are the ratio of the bending induced force to gravity force, a, the ratio of the horizontal shear force to the gravity force ratio, A and the change of location and the size of perforated part. To obtain the results by finite element method, an example plate has been divided into 27*9 square elements. Four node rectangular c.deg. continuous finite elements having three degrees of freedom per each node is adopted. It is generally concluded that the buckling coefficients decrease as the size of hole increases, and the location of hole moves to free edge of the wall.

  • PDF

Numerical Study on the Hydroelastic Response of the Very Large floating Structure Considering Sea-Bottom Topography (해저 지형을 고려한 초대형 부유체의 유탄성 거동 해석)

  • Kyoung, Jo-Hyun;Kim, Byoung-Wan;Cho, Seok-Hyu;Hong, Sa-Young
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.4 s.142
    • /
    • pp.357-367
    • /
    • 2005
  • A numerical method is developed for the hydroelastic response of the Very Large Floating Structure considering the sea-bottom topography. The sea-bottom effects on the hydroelastic response of the floating structure is studied. The sea-bottom topography should be considered when the floating structure is constructed near the shore. To investigate the sea-bottom effects, four different sea-bottom topographies are considered in this study. finite-element method based on the variational formulation is used in the fluid domain, The pontoon-type floating structure is modeled as the Kirchhoff plate. The mode superposition method is adopted for the hydroelastic behavior of the floating structure.

Size-dependent analysis of functionally graded ultra-thin films

  • Shaat, M.;Mahmoud, F.F.;Alshorbagy, A.E.;Alieldin, S.S.;Meletis, E.I.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.4
    • /
    • pp.431-448
    • /
    • 2012
  • In this paper, the first-order shear deformation theory (FSDT) (Mindlin) for continuum incorporating surface energy is exploited to study the static behavior of ultra-thin functionally graded (FG) plates. The size-dependent mechanical response is very important while the plate thickness reduces to micro/nano scales. Bulk stresses on the surfaces are required to satisfy the surface balance conditions involving surface stresses. Unlike the classical continuum plate models, the bulk transverse normal stress is preserved here. By incorporating the surface energies into the principle of minimum potential energy, a series of continuum governing differential equations which include intrinsic length scales are derived. The modifications over the classical continuum stiffness are also obtained. To illustrate the application of the theory, simply supported micro/nano scaled rectangular films subjected to a transverse mechanical load are investigated. Numerical examples are presented to present the effects of surface energies on the behavior of functionally graded (FG) film, whose effective elastic moduli of its bulk material are represented by the simple power law. The proposed model is then used for a comparison between the continuum analysis of FG ultra-thin plates with and without incorporating surface effects. Also, the transverse shear strain effect is studied by a comparison between the FG plate behavior based on Kirchhoff and Mindlin assumptions. In our analysis the residual surface tension under unstrained conditions and the surface Lame constants are expected to be the same for the upper and lower surfaces of the FG plate. The proposed model is verified by previous work.

Vibration Analysis of Rotating Disk-Spindle System Using Finite Element Method and Substructure Synthesis (유한 요소법과 부분 구조 합성법을 이용한 회전 디스크-스핀들 계의 진동 해석)

  • Jeong, Myeong-Su;Jang, Geon-Hui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2201-2210
    • /
    • 2000
  • Vibration of a rotating disk-spindle system is analyzed by using Hamilton's principle, FEM and substructure synthesis. A rotating disk undergoes the rigid body motion and the elastic deformation. It s equation of motion is derived by Kirchhoff plate theory and von Karman nonlinear strain. A rotating shaft is described by Rayleigh beam theory considering the axial rigid body motion. The stationay shaft supporting the rotating disk-spindle-bearing system is modeled by Euler beam theory, and the stiffness of ball bearing is determined by A.B.Jones' theory. FEM is used to solve the derived governing equations, and substructure synthesis is introduced to assemble each structure of the rotating disk-spindle system. The developed theory is applied to the spindle system of a 35' computer hard disk drive with 3 disks to verify the simulation results. The simulation results agree very well with the experimental ones. The proposed theory may be effectively expanded to the complex structure of a disk-spindle system.