• Title/Summary/Keyword: Kinetics model

Search Result 956, Processing Time 0.028 seconds

A Biomechanical Analysis of Lower Extremity Kinematics and Kinetics During Level Walking (평지를 걸어갈 때 하지운동과 작용하는 하중에 대한 생체역학적 해석)

  • Son, Kwon;Choi, Gi-Yeong;Chung, Min-Keun
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.8
    • /
    • pp.2101-2112
    • /
    • 1994
  • A two-dimensional biomechanical model was developed in order to calculated the lower extremity kinematics and kinetics during level walking. This model consists of three segments : the thigh, calf, and foot. Each segment was assumed to be a rigid body ; its motion to be planar in the sagittal plane. Five young males were involved in the gait experiment and their anthropometric data were measured for the calculation of segmental masses and moments of inertial. Six markers were used to obtain the kinematic data of the right lower extremity for at least three trials of walking at 1.0m/s, and simultaneously a Kistler force plate was used to obtain the foot-floor reaction data. Based on the experimental data acquired for the stance phase of the right foot, calculated vertical joint forces reached up to 0.91, 1.05, and 1.11 BW(body weight) at the hip, the knee, the ankle joints, respectively. The flexion-extension moments reached up to 69.7, 52.3, and 98.8 Nm in magnitude at the corresponding three joints. It was found that the calculated joint loadings of a subject were statistically the same for all his three trials, but not the same for all five subjects involved in the gait study.

Textile dye wastewater treatment using coriolus versicolor

  • Sathian, S.;Radha, G.;Priya, V. Shanmuga;Rajasimman, M.;Karthikeyan, C.
    • Advances in environmental research
    • /
    • v.1 no.2
    • /
    • pp.153-166
    • /
    • 2012
  • Decolourization potential of white rot fungal organism, coriolus versicolor, was investigated in a batch reactor, for textile dye industry wastewater. The influence of process parameters like pH, temperature, agitation speed and dye wastewater concentration on the decolourization of textile dye wastewater was examined by using Response surface methodology (RSM). The maximum decolourization was attained at: pH- 6.8, temperature - $27.9^{\circ}C$, agitation speed - 160 rpm and dye wastewater concentration - 1:2. From the analysis of variance (ANOVA) results it was found that, the linear effect of agitation speed and dye wastewater concentration were significant for the decolourization of textile dye wastewater. At these optimized condition, the maximum decolourization and chemical oxygen demand (COD) reduction was found to be 64.4% and 79.8% respectively. Various external carbon sources were tried to enhance the decolourization of textile dye wastewater. It was observed that the addition of carbon source enhances the decolourization of textile dye wastewater. Kinetics of textile dye degradation process was studied by first order and diffusional model. From the results it was found that the degradation follows first order model with $R^2$ value of 0.9430.

Kinetics of HMGB1 level changes in a canine endotoxemia model

  • Yu, Do-Hyeon;Park, Jinho
    • Korean Journal of Veterinary Research
    • /
    • v.51 no.3
    • /
    • pp.239-241
    • /
    • 2011
  • In this study, we investigated the kinetics of tumor necrosis factor (TNF)-${\alpha}$, interleukin (IL)-6 and high mobility group box 1 (HMGB1) concentrations in a 48-h model of canine endotoxemia by lipopolysaccharide (LPS) injection. Four healthy beagles were slowly administered 1 mg/kg of LPS diluted in normal saline, while two others were administered normal saline as controls. Blood collection was performed at 0 h (baseline), 1 h and 3 h (for TNF-${\alpha}$), 6 h, 12 h, 24 h and 48 h of the experiment, and cytokine levels were determined using the sandwich ELISA method. Early increments of TNF-${\alpha}$ and IL-6 were observed (< 3 h), but HMGB1 levels increased the most at 12 h of the experiment and gradually decreased until 48 h. During the whole experiment, IL-6 and HMGB1 were sustained over 12 h of LPS injection, whereas TNF-${\alpha}$ decreased within 6 h of LPS injection. Taken together, canine HMGB1 levels increase relatively late (< 12 h) and sustained longer than TNF-${\alpha}$ and IL-6 in response to endotoxin. This is the first study to evaluate canine HMGB1 cytokine from endotoxemia in dogs.

Haldane Inhibition at CAH DNAPL Source Zone in Soil and Groundwater

  • Yu, Seung-Ho;Semprini, Lewis
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.33-36
    • /
    • 2004
  • Two biokinetic models (\circled1 Mrichaelis-Menten kinetics with competitive inhibition \circled2 with both competitive inhibition and Haldane inhibition) for reductive dechlorination were developed and compared with results from batch kinetic tests conducted over a wide range of PCE and TCE concentrations with two different dechlorinating cultures. At PCE concentrations lower than 300 $\mu$M, both model simulated the experimental results well. However, The kinetic model that incorporated both competitive and Haldane inhibitions much better simulated experimental data for PCE concentrations greater than 300-400 $\mu$M, and TCE concentrations at half its solubility limit (4000 $\mu$M). The PM culture showed Haldane inhibition constants of 900, 6000, 7000 $\mu$M for TCE, c-DCE and VC, indicating very weak Haldane inhibition for c-DCE and VC, while the EV culture had lower Haldane inhibition constants for TCE, c-DCE, and VC of 900, 750, and 750 $\mu$M, respectively. The BM culture had better transformation abilities than the individual cultures over a wide range of PCE and TCE concentrations. Modeling results indicated that a combination of competitive and Haldane inhibition kinetics is required to simulate dechlorination over a broad range of concentrations up to the solubility limits of PCE and TCE.

  • PDF

The Evaluation of Diffusivity of Lithium for Coarsening of δ' Precipitate in AI-Li-Cu-Mg-Zr Alloy (Al-Li-Cu-Mg-Zr 합금에 있어서 δ'상 조대화를 위한 Lithium의 확산계수 평가)

  • Chung, D.S.;Kim, E.S.;Cho, H.K.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.7 no.1
    • /
    • pp.17-24
    • /
    • 1994
  • The evaluation and analysis of diffusivity of lithium for coarsening and coarsening kinetics of ${\delta}^{\prime}$ precipitate in Al-Li-Cu-Mg-Zr alloy aged at $170^{\circ}C$ have been investigated by transmission electron microscopy. With ageing time, ${\delta}^{\prime}$ precipitate coaesened to followed $\bar{\gamma}{\propto}t^{1/3}$ and coarsening kinetics was found to be obeyed to the Lifshitz-Slyozov-Wagner(LSW) theory and diffusivity of lithium for coarsening of ${\delta}^{\prime}$ precipitate in Al-Li-Cu-Mg-Zr alloy was obtained to be $5.85{\times}10^{-17}{\sim}1.53{\times}10^{-16}$ by experimental coarsening rate constant and various coarsening kinetic theory. Diffusivity of lithium measured by using various model but MLSW and Tsumuraya (VI) et al. model in Al-Li-Cu-Mg-Zr alloy is similar to that calculated by the Costas's diffusivity equation. It was, therefore, suggested that additing to the Cu, Mg and Zr element in Al-Li system have no great effect on diiffusivity of lithium for coarsening of ${\delta}^{\prime}$ This suggest that in matrix.

  • PDF

Disturbance observer based adaptive sliding mode control for power tracking of PWRs

  • Hui, Jiuwu;Yuan, Jingqi
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2522-2534
    • /
    • 2020
  • It is well known that the model of nuclear reactors features natural nonlinearity, and variable parameters during power tracking operation. In this paper, a disturbance observer-based adaptive sliding mode control (DOB-ASMC) strategy is proposed for power tracking of the pressurized-water reactor (PWR) in the presence of lumped disturbances. The nuclear reactor model is firstly established based on point-reactor kinetics equations with six delayed neutron groups. Then, a new sliding mode disturbance observer is designed to estimate the lumped disturbance, and its stability is discussed. On the basis of the developed DOB, an adaptive sliding mode control scheme is proposed, which is a combination of backstepping technique and integral sliding mode control approach. In addition, an adaptive law is introduced to enhance the robustness of a PWR with disturbances. The asymptotic stability of the overall control system is verified by Lyapunov stability theory. Simulation results are provided to demonstrate that the proposed DOB-ASMC strategy has better power tracking performance than conventional sliding mode controller and PID control method as well as conventional backstepping controller.

Adsorption Kinetics for Polymeric Additives in Papermaking Aqueous Fibrous Media by UV Spectroscopic Analysis

  • Yoon, Sung-Hoon;Chai, Xin-Sheng
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.11
    • /
    • pp.1819-1824
    • /
    • 2006
  • The general objective of the present study was to investigate the potential application of the UV spectroscopic method for determination of the polymeric additives present in papermaking fibrous stock solutions. The study also intended to establish the surface-chemical retention model associated with the adsorption kinetics of additives on fiber surfaces. Polyamide epichlorohydrin (PAE) wet strength resin and imidazolinium quaternary (IZQ) softening agents were selected to evaluate the analytical method. Concentrations of PAE and IZQ in solution were proportional to the UV absorption at 314 and 400 nm, respectively. The time-dependent behavior of polymeric additives obeyed a mono-molecular layer adsorption as characterized in Langmuir-type expression. The kinetic modeling for polymeric adsorption on fiber surfaces was based on a concept that polymeric adsorption on fiber surfaces has two distinguishable stages including initial dynamic adsorption phase and the final near-equilibrium state. The simulation model predicted not only the real-time additive adsorption behavior for polymeric additives at high accuracy once the kinetic parameters were determined, but showed a good agreement with the experimental data. The spectroscopic method examined on the PAE and IZQ adsorption study could potentially be considered as an effective tool for the wet-end retention control as applied to the paper industry.

Point Kinetics Approach to the Analysis of Overpower Transients of the Ko-ri Unit 1 Reactor (점 근사 동특성 모델을 이용한 고리 원자력 1호기의 과도출력 전이 해석)

  • Hyun Dae Kim;Chang Hyun Chung;Chang Hyo Kim
    • Nuclear Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.153-161
    • /
    • 1981
  • The dynamic behavior of the Ko-ri Unit 1 nuclear reactor following some credible and postulated accidents has been analyzed to a certain extent by means of neutronics and temperature equations formulated in terms of point reactor model. In general, the result of numerical calculation is harnessed to be incorporated in more elaborate models so as to predict transient behavior in a reliable mode as a part of accident analysis. It is shown in the case of power response upon an uncontrolled withdrawal of rod cluster control assembly at hot full power that the point reactor kinetics model proves to be good enough to reproduce the generic features described in the final safety analysis report of the Ko-ri Unit 1.

  • PDF

Feasibility Study on Similarity Principle in Discrete Element Analysis (이산요소법을 이용한 수치해석에서의 상사성 이론의 적용성 검토)

  • Yun, Taeyoung;Park, Hee Mun
    • International Journal of Highway Engineering
    • /
    • v.18 no.2
    • /
    • pp.51-60
    • /
    • 2016
  • PURPOSES : The applicability of the mechanics-based similarity concept (suggested by Feng et al.) for determining scaled variables, including length and load, via laboratory-scale tests and discrete element analysis, was evaluated. METHODS: Several studies on the similarity concept were reviewed. The exact scaling approach, a similarity concept described by Feng, was applied in order to determine an analytical solution of a free-falling ball. This solution can be considered one of the simplest conditions for discrete element analysis. RESULTS : The results revealed that 1) the exact scaling approach can be used to determine the scale of variables in laboratory tests and numerical analysis, 2) applying only a scale factor, via the exact scaling approach, is inadequate for the error-free replacement of small particles by large ones during discrete element analysis, 3) the level of continuity of flowable materials such as SCC and cement mortar seems to be an important criterion for evaluating the applicability of the similarity concept, and 4) additional conditions, such as the kinetics of particle, contact model, and geometry, must be taken into consideration to achieve the maximum radius of replacement particles during discrete element analysis. CONCLUSIONS : The concept of similarity is a convenient tool to evaluate the correspondence of scaled laboratory test or numerical analysis to physical condition. However, to achieve excellent correspondence, additional factors, such as the kinetics of particles, contact model, and geometry, must be taken into consideration.

Henry gas solubility optimization for control of a nuclear reactor: A case study

  • Mousakazemi, Seyed Mohammad Hossein
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.940-947
    • /
    • 2022
  • Meta-heuristic algorithms have found their place in optimization problems. Henry gas solubility optimization (HGSO) is one of the newest population-based algorithms. This algorithm is inspired by Henry's law of physics. To evaluate the performance of a new algorithm, it must be used in various problems. On the other hand, the optimization of the proportional-integral-derivative (PID) gains for load-following of a nuclear power plant (NPP) is a good challenge to assess the performance of HGSO. Accordingly, the power control of a pressurized water reactor (PWR) is targeted, based on the point kinetics model with six groups of delayed-neutron precursors. In any optimization problem based on meta-heuristic algorithms, an efficient objective function is required. Therefore, the integral of the time-weighted square error (ITSE) performance index is utilized as the objective (cost) function of HGSO, which is constrained by a stability criterion in steady-state operations. A Lyapunov approach guarantees this stability. The results show that this method provides superior results compared to an empirically tuned PID controller with the least error. It also achieves good accuracy compared to an established GA-tuned PID controller.