• Title/Summary/Keyword: Kinetics model

Search Result 956, Processing Time 0.023 seconds

Study on Model of Emulsion Polymeration 2. Kinetics of Termonomer Emulsion Polymerization (유화중합의 모델연구 2. 삼모노머유화중합의 동력학)

  • Park, S.B.;SE, C.S.
    • Applied Chemistry for Engineering
    • /
    • v.9 no.2
    • /
    • pp.300-305
    • /
    • 1998
  • Kinetics of termonomer emulsion polymerization during interval II (i.e, after completion of latex particle formation) were studied through pseudo-homopolymerization (PHP) method. Extended Smith-Ewart equation and equation of instantaneous polymer composition are respectively reduced to the corresponding equation for homopolymerization by defining average rate constants. Average number of radicals per particle and instantaneous polymer compositions were respectively predicted by varying termonomer composition within latex particles for systems containing no more than one growing radical per particle. Styrene-Methyl methacrylate-Acrylonitrile (SMA) system was used for model calculation.

  • PDF

Development of Porous Sorbents for Removal of Hydrogen Sulfide from Hot Coal Gas -II. Kinetics of Suffidation on Zinc Oxide - (고온석탄가스에서 황화물을 제거하기 위한 다공성 흡착제의 개발 -II. 산화아연의 황화반응에 관한 연구-)

  • 서인식;이재복;류경옥
    • Journal of Environmental Health Sciences
    • /
    • v.14 no.1
    • /
    • pp.11-22
    • /
    • 1988
  • Calcium oxide, lithium oxide and titanium oxide were investigated as additives of zinc oxide for the removal of hydrogen sulfide at high temperature. This experiment was performed in the range of 1.0-2.0 vol.% H$_2$S concentration at 623-873 K reaction temperature, using a thermogravimetric analyzer. A pore blocking model was found to fit the reaction rate and the kinetics data were sucessfully expressed by this model. The reactions between additive sorbents and hydrogen sulfide were first order with respect to hydrogen sulfide concentration in a gaseous mixture with nitrogen. Among the used sorbents, ZnO-CaO 0.5 at.% and ZnO-TiO$_2$ 2.0 at.% sorbents had the best additive effects on the sulfidation reaction between additive sorbents and hydrogen sulfide, whereas the ZnO-Li$_2$O sorbents were ineffective.

  • PDF

Influence of VOCs Structure on Catalytic Oxidation Kinetics (휘발성 유기화합물(VOCs)의 촉매산화 전환에서 결합구조의 영향 및 속도특성)

  • 이승범;윤용수;홍인권;이재동
    • Journal of environmental and Sanitary engineering
    • /
    • v.15 no.4
    • /
    • pp.44-51
    • /
    • 2000
  • The reactivity of a range of volatile organic compounds with differing functional groups observed over 0.5% $Pt/{\gamma}-Al_2O_3$ catalyst. In general, the reactivity pattern observed was alcohols > aromatics > ketones > cycloalkane > alkanes. The deep conversion was increased as reaction temperature was increased. A correlation was found between the reactivity of the individual and the strength of the weakest C-Hbond in structure. The conversion of volatile organic compounds increases in order methanol > benzene > cyclohexane > MEK > n-hexane. That is the effect of differences in total dissociation energy. An apparent zeroth-order kinetics with respect to inlet concentration have been observed. A simple multicomponent model based on two-stage redox model made reasonably good predictions of conversion over the range of parameters studied. thus, the catalytic process was suggested as the new VOCs control technology.

  • PDF

Numerical Study on Structure and Pollutant Formation for Syngas Turbulent Nonpremixed Swirling Flames (석탄가스 선회난류 비예혼합 화염장의 화염구조 및 NOx 배출특성 해석)

  • Lee, Jeong-Won;Kang, Sung-Mo;Kim, Yong-Mo;Joo, Yong-Jin
    • Journal of the Korean Society of Combustion
    • /
    • v.14 no.2
    • /
    • pp.10-17
    • /
    • 2009
  • The present study numerically investigate the effects of the Syngas chemical kinetics on the basic flame properties and the structure of the Syngas nonpremixed flames. In order to realistically represent the turbulencechemistry interaction and the spatial inhomogeneity of scalar dissipation rate, the Eulerian Particle Flamelet Model (EPFM) with multiple flamelets has been applied to simulate the combustion processes and NOx formation in the syngas turbulent nonpremixed flames. Validation cases include the Syngas turbulent nonpremixed jet and swirling flames. Based on numerical results, the detailed discussion has been made for the effects of the chemical kinetics, the flame structure, and NOx formation characteristics in the turbulent Syngas nonpremixed flames.

  • PDF

Modeling for Vacuum Drying Characteristics of Onion Slices

  • Lee, Jun-Ho;Kim, Hui-Jeong
    • Food Science and Biotechnology
    • /
    • v.18 no.5
    • /
    • pp.1293-1297
    • /
    • 2009
  • In this study, drying kinetics of onion slices was examined in a laboratory scale vacuum dryer at an air temperature in a range of $50-70^{\circ}C$. Moisture transfer from onion slices was described by applying the Fick's diffusion model, and the effective diffusivity was calculated. Temperature dependency of the effective diffusivity during drying process obeyed the Arrhenius relationship. Effective diffusivity increased with increasing temperature and the activation energy for the onion slices was estimated to be 16.92 kJ/mol. The experimental drying data were used to fit 9 drying models, and drying rate constants and coefficients of models tested were determined by non-linear regression analysis. Estimations by the page and Two-term exponential models were in good agreement with the experimental data obtained.

SECOND-ORDER SLIDING-MODE CONTROL FOR A PRESSURIZED WATER NUCLEAR REACTOR CONSIDERING THE XENON CONCENTRATION FEEDBACK

  • ANSARIFAR, GHOLAM REZA;RAFIEI, MAESAM
    • Nuclear Engineering and Technology
    • /
    • v.47 no.1
    • /
    • pp.94-101
    • /
    • 2015
  • This paper presents findings on the second-order sliding-mode controller for a nuclear research reactor. Sliding-mode controllers for nuclear reactors have been used for some time, but higher-order sliding-mode controllers have the added advantage of reduced chattering. The nonlinear model of Pakistan Research Reactor-1 has been used for higherorder sliding-mode controller design and performance evaluation. The reactor core is simulated based on point kinetics equations and one delayed neutron groups. The model assumes feedback from lumped fuel and coolant temperatures. The effect of xenon concentration is also considered. The employed method is easy to implement in practical applications, and the second-order sliding-mode control exhibits the desired dynamic properties during the entire output-tracking process. Simulation results are presented to demonstrate the effectiveness of the proposed controller in terms of performance, robustness, and stability.

Cybernetic Modeling of Simultaneous Saccharification and Fermentation for Ethanol Production from Steam-Exploded Wood with Brettanomyces custersii

  • Shin Dong-Gyun;Yoo Ah-Rim;Kim Seung-Wook;Yang Dae-Ryook
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.9
    • /
    • pp.1355-1361
    • /
    • 2006
  • The simultaneous saccharification and fermentation (SSF) process consists of concurrent enzymatic saccharification and fermentation. In the present cybernetic model, the saccharification process, which is based on the modified Michaelis-Menten kinetics and enzyme inhibition kinetics, was combined with the fermentation process, which is based on the Monod equation. The cybernetic modeling approach postulates that cells adapt to utilize the limited resources available to them in an optimal way. The cybernetic modeling was suitable for describing sequential growth on multiple substrates by Brettanomyces custersii, which is a glucose- and cellobiose-fermenting yeast. The proposed model was able to elucidate the SSF process in a systematic manner, and the performance was verified by previously published data.

Modeling of Volume Expansion Effects During Infusion of Ringer's Solution (링거액 주입시의 부피팽창 효과에 대한 모델링)

  • Lee, Eun-Ho;Choi, Kyu-Taek;Yeo, Yeong-Koo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.12
    • /
    • pp.1191-1196
    • /
    • 2006
  • In this work the kinetics of volume changes of fluid spaces associated with infusion of Ringer's solution are analyzed using the body fluid space model. During infusion of Ringer's solution, the human body is assumed to be characterized by the fluid space model into which fluid is fed and from which fluid is left. Various infusion types were tested to accommodate different medical situations. Volunteers were given Ringer's solution and the changes in blood hemoglobin were detected. From the comparison with experimental data, the single- and two-fluid space models were found to represent adequately the kinetics of human volume expansion during infusion of Ringer's solution.

A Kinetic Study of Biphenyl Type Epoxy-Xylok Resin System with Different Kinds of Catalysts

  • 한승;김환근;윤호규;문탁진
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.11
    • /
    • pp.1199-1203
    • /
    • 1997
  • The investigation of cure kinetics of biphenyl epoxy (4,4-diglycidyloxy-3,3,5,5-tetramethyl biphenyl)-xylok resin system with four different catalysts was performed by differential scanning calorimeter using an isothermal approach. All kinetic parameters of the curing reaction including the reaction order, activation energy and rate constant were calculated and reported. The results indicate that the curing reaction of the formulations using triphenylphosphine (TPP) and 1-benzyl-2-methylimidazole (1B2MI) as a catalyst proceeds through a first order kinetic mechanism, whereas that of the formulations using diazabicyloundecene (DBU) and tetraphenyl phosphonium tetraphenyl borate (TPP-TPB) proceeds by an autocatalytic kinetic mechanism. To describe the cure reaction in the latter stage, we have used the semiempirical relationship proposed by Chern and Poehlein. By combining an nth order kinetic model or an autocatalytic model with a diffusion factor, it is possible to predict the cure kinetics of each catalytic system over the whole range of conversion.

Closed-loop controller design, stability analysis and hardware implementation for fractional neutron point kinetics model

  • Vyawahare, Vishwesh A.;Datkhile, G.;Kadam, P.;Espinosa-Paredes, G.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.2
    • /
    • pp.688-694
    • /
    • 2021
  • The aim of this work is the analysis, design and hardware implementation of the fractional-order point kinetics (FNPK) model along with its closed-loop controller. The stability and closed-loop control of FNPK models are critical issues. The closed-loop stability of the controller-plant structure is established. Further, the designed PI/PD controllers are implemented in real-time on a DSP processor. The simulation and real-time hardware studies confirm that the designed PI/PD controllers result in a damped stable closed-loop response.