• Title/Summary/Keyword: Kinetic modelling

Search Result 46, Processing Time 0.02 seconds

Chemical kinetic models for predicting SI engine knocking (불꽃 점화기관의 노킹을 예측하는 화학적 모델)

  • 박병완
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.4
    • /
    • pp.35-42
    • /
    • 1991
  • 본 연구에서는 말단가스의 온도, 압력 그리고 농도가 변화함에 따라 어떻게 자동점화가 일어나는지를 서술하는 chemical kinetic model에 대하여 서술한다. 먼저 자동점화 현상을 화학적으로 modelling하는데 두가지 다른 접근방식에 대해 서술하고 각각 model의 예측치와 실험치와의 상관관계를 알아본 후, 마지막으로 두 model을 비교하여 본다.

  • PDF

Study on the numerical models of turbulent dispersion of solid particles in a two-phase turbulent jet flow (이상난류제트 유동에서 고체입자 난류확산의 수치모델에 관한 연구)

  • 양선규;최영돈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.1
    • /
    • pp.1-18
    • /
    • 1987
  • Prediction performances by Einstein's equation of diffusivity, Peskin's model, Three-Equation model, Four-Equation model and Algebraic Stress Model, have been compared by analyzing twophase (air-solid) turbulent jet flow. Turbulent kinetic energy equation of dispersed phase was solved to investigate effects of turbulent kinetic energy on turbulent diffusivity. Turbulent kinetic energy dissipation rate of particles has been considered by solving turbulent kinetic energy dissipation rate equation of dispesed phase and applying it to turbulent diffusivity of dispersed phase. Results show that turbulent diffusivity of dispersed phase can be expressed by turbulent kinetic energy ratio between phases and prediction of turbulent kinetic energy was improved by considering turbulent kinetic energy dissipation rate of dispersed phase for modelling turbulent diffusivity. This investigation also show that Algebraic Stress Model is the most promising method in analyzing gas-solid two phaes turbulent flow.

A Study on the Improvement of Dynamic Characteristics of Spindle-Work System in Lathe - Focused on the Bolt Juint between Headstock and Bed - (선반주축계의 동특성 향상에 관한 연구 -주축대와 베드의 보울트 결합을 중심으로-)

  • 신용호;박태원;홍동표;정인성
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.1
    • /
    • pp.1-7
    • /
    • 1988
  • Prediction performances by Einstein's equation of diffusivity, Peskin's model, Three-Equation model, Four-Equation model and Algebraic Stress Model, have been compared by analyzing twophase (air-solid) turbulent jet flow. Turbulent kinetic energy equation of dispersed phase was solved to investigate effects of turbulent kinetic energy on turbulent diffusivity. Turbulent kinetic energy dissipation rate of particles has been considered by solving turbulent kinetic energy dissipation rate equation of dispersed phase and applying it to turbulent diffusivity of dispersed phase. Results show that turbulent diffusivity of dispersed phase can be expressed by turbulent kinetic energy ratio between phases and prediction of turbulent kinetic energy was improved by considering turbulent kinetic energy dissipation rate of dispersed phase for modelling turbulent diffusivity. This investigation also show that Algebraic Stress Model is the most promising method in analyzing gas-solid two phases turbulent flow.

MATHEMATICAL MODELLING FOR THE AXIALLY MOVING PLATE WITH INTERNAL TIME DELAY

  • Kim, Daewook
    • East Asian mathematical journal
    • /
    • v.37 no.5
    • /
    • pp.619-626
    • /
    • 2021
  • In [1, 2], we studied the string-like system with time-varying delay. Unlike the string system, the plate system must consider both longitudinal and transverse strains. First, we consider the physical phenomenon of an axially moving plate concerning kinetic energy, potential energy, and work dones. By the energy conservation law in physics, we have a nonlinear plate-like system with internal time delay.

MATHEMATICAL MODELLING FOR THE AXIALLY MOVING MEMBRANE WITH INTERNAL TIME DELAY

  • Kim, Daewook
    • East Asian mathematical journal
    • /
    • v.37 no.1
    • /
    • pp.141-147
    • /
    • 2021
  • In [1], we studied the PDE system with time-varing delay. Time delay occurs due to loosening in a high-speed moving axially directed membrane (string, belt, or plate) at production. Our purpose in this work derives a mathematical model with internal time delay. First, we consider the physical phenomenon of axially moving membrane with respect to kinetic energy, potential energy and work done. By the energy conservation law in physics, we get the second order nonlinear PDE system with internal time delay.

Kinetic modeling of organic and nitrogen removal from domestic wastewater in a down-flow hanging sponge bioreactor

  • Nga, Dinh Thi;Hiep, Nguyen Trung;Hung, Nguyen Tri Quang
    • Environmental Engineering Research
    • /
    • v.25 no.2
    • /
    • pp.243-250
    • /
    • 2020
  • A down-flow hanging sponge (DHS) bioreactor was operated for the treatment of domestic wastewater. The Stover-Kincannon model was applied for kinetic evaluation of the reactor performance during the operational period. As a result, the coefficient of determination (R2) for straight lines of effluent concentration from the experimental data and from the predictive data of BOD5; NH4+-N; and TN were 0.9727; 0.9883; and 0.9934, respectively. The calculation of saturation value constant (Umax - g L-1 d-1) and maximum utilization rate constant (KB - g L-1 d-1) were 56.818 and 75.034 for BOD5; 2.960 and 4.713 for NH4+-N; 2.810 and 8.37 for TN, respectively. The study suggests that Stover-Kincannon model can be used for effective evaluation of kinetic removal of BOD5; NH4+-N; and TN from domestic wastewater treated in a DHS bioreactor.

Characterisation of multiple substrate-specific (d)ITP/(d)XTPase and modelling of deaminated purine nucleotide metabolism

  • Davies, Oluwafemi;Mendes, Pedro;Smallbone, Kieran;Malys, Naglis
    • BMB Reports
    • /
    • v.45 no.4
    • /
    • pp.259-264
    • /
    • 2012
  • Accumulation of modified nucleotides is defective to various cellular processes, especially those involving DNA and RNA. To be viable, organisms possess a number of (deoxy)nucleotide phosphohydrolases, which hydrolyze these nucleotides removing them from the active NTP and dNTP pools. Deamination of purine bases can result in accumulation of such nucleotides as ITP, dITP, XTP and dXTP. E. coli RdgB has been characterised as a deoxyribonucleoside triphosphate pyrophosphohydrolase that can act on these nucleotides. S. cerevisiae homologue encoded by YJR069C was purified and its (d)NTPase activity was assayed using fifteen nucleotide substrates. ITP, dITP, and XTP were identified as major substrates and kinetic parameters measured. Inhibition by ATP, dATP and GTP were established. On the basis of experimental and published data, modelling and simulation of ITP, dITP, XTP and dXTP metabolism was performed. (d)ITP/(d)XTPase is a new example of enzyme with multiple substrate-specificity demonstrating that multispecificity is not a rare phenomenon

MODELLING OF PYROLYSIS PROCESSES OF POLYACRYLONITRILE

  • Lipanov, A.M.;Kodolov, V.I.;Ovchinnikova, L.N.;Savinsky, S.S.;Khokhriakov, N.V.;Sarakula, V.L.
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.112-119
    • /
    • 1997
  • The modelling of carbon substances obtaining, for instance, carbon fibers which have high fire resistance, has been realized on the example of the polyacrylonitrile pyrolysis modelling. The pyrolysis is considered as a double step process when the formation of a liquid phase and the oxidation of substance are excluded. Three main reactions are considered: a) with the evolution of ammonia; b) with the evolution of hydrogen cyanide; c) with the evolution of hydrogen. Reactions b) and c) are sequential, and a) and b) are parallel. The problem is formulated as one-dimensional. The equations of energy, masses or concentrations, porosity and thermal conductivity are proposed. The mathematical model of the carbonization process is designed using tile kinetic characteristics of the above reactions and the thermodynamic parameters of reagents and products in these reactions. The equations received are calculated by Runge-Cutta method and by Adams method of the fourth order accuracy.

  • PDF

The study on kinetic value for simulation in fluidized catalytic gasification (유동층에서의 촉매 석탄가스화 공정 모델 모사를 위한 kinetics에 대한 연구)

  • Jang, Dong-Ha;Jeon, Young-Shin;Kim, Hyung-Taek
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.74.1-74.1
    • /
    • 2011
  • As a demand for energy, many studies are increasing about energy resource. One of these resources is coal which reserves of underground. A lot of research to use coal is going on as method of IGCC (Integrated Gasification Combined Cycle). In addition, SNG(Substitute Natural Gas) and IGFC (Integrated Gasification Fuel Cell) are also being developed for fuel & electricity. This technology which uses synthesis gas after gasification is to produce electricity from the Fuel Cell. At this point, important thing is the components of synthesis gas. The main objective is to increase the proportion of methane and hydrogen in synthesis gas. The catalytic gasification is suitable to enhance the composition of methane and hydrogen. In this study, Exxon Predevelopment catalyst gasification study was served as a good reference and then catalytic gasification simulation process is conducting using Aspen Plus in this research. For this modelling, kinetic value should be calculated from Exxon's report which is used for modeling catalytic gasification. Catalytic gasification model was performed by following above method and was analyzed by thermodynamic method through simulation results.

  • PDF

Kinetics and Equilibrium Study on β-glucosidase under High Hydrostatic Pressure (고압에서 β-glucosidase 반응속도론 및 평형에 관한 연구)

  • Han, Jin Young;Lee, Seung Ju
    • Food Engineering Progress
    • /
    • v.15 no.3
    • /
    • pp.214-220
    • /
    • 2011
  • $\beta$-Glucosidase enzyme reaction under high hydrostatic pressure was investigated in terms of physical chemistry. A model substrate (p-nitrophenyl-${\beta}$-D-glucopyranoside(pNPG)) was used, and the pressure effects on the enzymatic hydrolysis (pNPG${\rightarrow}$pNP) at 25 MPa, 50 MPa, 75 MPa, and 100 MPa were analyzed. Two parts of the reaction such as kinetic and equilibrium stages were considered for mathematical modelling, and their physicochemical parameters such as forward and inverse reaction constants, equilibrium constant, volume change by pressure, etc. were mathematically modeled. The product concentration increased with pressure, and the two stages of reaction were observed. Prediction models were derived to numerically compute the product concentrations according to reaction time over kinetic to equilibrium stages under high pressure condition. Conclusively, the $\beta$-Glucosidase enzyme reaction could be activated by pressurization within 100 MPa, and the developed models were very successful in their prediction.