• 제목/요약/키워드: Kinetic decomposition

검색결과 126건 처리시간 0.03초

CrOx/γ-alumina 촉매상에서 Vinyl Chloride의 산화반응 속도해석 (Kinetics of Catalytic Oxidation of Vinyl Chloride over CrOx/γ-alumina)

  • 이해완;김영채;문세기
    • 공업화학
    • /
    • 제10권1호
    • /
    • pp.85-92
    • /
    • 1999
  • 고정층 촉매 반응기를 이용하여 ${\gamma}$-알루미나에 담지한 크롬산화물 촉매상에서 vinyl chloride의 완전산화잔응을 $240{\sim}300^{\circ}C$의 온도와 600~3,500 ppm의 농도범위에서 조사하였다. 반응은 vinyl chloride의 농도에 대하여 비선형적으로 변하였으며, 산소의 농도에 대하여는 0차 거동을 보였다. 또한 반응 생성물인 $H_2O$와 HCl를 반응물에 첨가하였을 때 vinyl chloride의 전환율에 영향이 거의 없었다. Vinyl chloride의 산화반응에 대한 몇 가지 반응모델을 가정하고 실험결과와 상관시켜 가장 잘 일치하는 모델을 도출하였다. 속도식의 해석결과 vinyl chloride의 산화반응은 산소로 피복된 촉매표면에 vinyl chloride가 흡착한 후 산화분해되며, vinyl chloride가 촉매표면에 흡착하여 반응을 방해한다는 가정하에서 도출된 반응속도 모델이 실험결과를 가장 잘 표현하였다. 실험치와 예측치간의 표준편차 백분율은 약 5.2% 정도였으며 활성화에너지는 18.9 kcal/mol으로 계산되었다.

  • PDF

$^1H$-NMR에 의한 Xylan의 황산가수분해 과정에서 나타나는 반응 동력학 연구 (Kinetic Study of Xylan Hydrolysis and Decomposition in Concentrated Sulfuric Acid Hydrolysis Process by $^1H$-NMR Spectroscopy)

  • 조대행;김용환;김병로;박종문;성용주;신수정
    • 펄프종이기술
    • /
    • 제43권3호
    • /
    • pp.52-58
    • /
    • 2011
  • Proton-NMR spectroscopic method was applied to kinetic study of concentrated sulfuric acid hydrolysis reaction, especially focused on 2nd step of acid hydrolysis with deferent reaction time and temperature as main variables. Commercial xylan extracted from beech wood was used as model compound. In concentrated acid hydrolysis, xylan was converted to xylose, which is unstable in 2nd hydrolysis condition, which decomposed to furfural or other reaction products. Without neutralization steps, proton-NMR spectroscopic analysis method was valid for analysis of not only monosaccharide (xylose) but also other reaction products (furfural and formic acid) in acid hydrolyzates from concentrated acid hydrolysis of xylan, which was the main advantages of this analytical method. Higher temperature and longer reaction time at 2nd step acid hydrolysis led to less xylose concentration in xylan acid hydrolyzate, especially at $120^{\circ}C$ and 120 min, which meant hydrolyzed xylose was converted to furfural or other reaction products. Loss of xylose was not match with furfural formation, which meant part of furfural was degraded to other undetected compounds. Formation of formic acid was unexpected from acidic dehydration of pentose, which might come from the glucuronic acid at the side chain of xylan.

The drivers and energetics of ionized gas outflows in powerful Type 2 AGN in the local Universe

  • Karouzos, Marios;Woo, Jong-Hak;Bae, Hyun-Jin
    • 천문학회보
    • /
    • 제41권1호
    • /
    • pp.37.2-37.2
    • /
    • 2016
  • There exist scaling relations that link the mass of supermassive black holes with both the velocity dispersion and the mass of the central stellar cusp of their host galaxies. This implies that galaxies co-evolve with their central black holes, potentially through the feedback from actively accreting supermassive black holes (AGN). We use integral field spectroscopy data from the 8.2m Gemini-North telescope to investigate ionized gas outflows in luminous local (z<0.1) Type 2 AGN. Our sample of 6 galaxies was selected based on their [OIII] dust-corrected luminosity (>$10^{42}erg/s$) and signatures of outflows in the [OIII] line profile of their SDSS spectra. These are arguably the best candidates to explore AGN feedback in action since they are < 1% of a large local type 2 AGN SDSS sample selected based on their [OIII] kinematics. Expanding on previously reported results concerning the kinematic decomposition and size determination of these outflows, here we report their photoionization properties and energetics. We find strong evidence that connect the extreme kinematics of the ionized gas with AGN photoionization. The kinematic component related to the AGN-driven outflow is clearly separated from other kinematic components, such as gravitation- or stellar-driven motions, on the velocity and velocity dispersion diagram. Our spatially resolved kinematic analysis reveals that up to 90% of the mass and kinetic energy of the outflow is contained within the central kiloparcec of the galaxy. The total mass and kinetic energy of the outflow correlate well with the AGN bolometric luminosity, resulting in energy conversion efficiencies between 0.01% and 1%. Intriguingly, we detect ubiquitous signs of ongoing circumnuclear star formation. Their small size, the centrally contained mass and energy, and the universally detected circumnuclear star formation cast doubts on the potency of these AGN-driven outflows as agents of negative feedback.

  • PDF

AKTS Software를 이용한 주조형 복합화약의 노화 특성 예측 (Estimation of Aging Properties for Plastic Bonded Explosives Using AKTS Thermokinetic Software)

  • 권국태;이소정;김승희
    • 한국추진공학회지
    • /
    • 제22권1호
    • /
    • pp.66-71
    • /
    • 2018
  • 에너지 물질의 수명평가는 중요하게 여겨지지만, 여러 가지 어려움을 갖고 있다. 먼저 노화시험에 매우 긴 시간이 소요되고, 에너지 물질이기 때문에 취급 시 항상 위험이 존재한다. 이런 이유들로 인해서 예측이나 계산 방법들이 발달되어 왔다. 에너지 물질은 열을 내놓으면서 분해되기 때문에, 에너지 물질의 열적 특성을 분석하는 것은 에너지 물질의 분해와 노화 특성을 이해하는데 매우 중요하다. 이번 연구에서는 첫째, DSC를 기초데이터로 하여 AKTS software를 이용하여 간단한 열분석으로부터 열적인 노화 특성을 예측하는 결과들을 발표하고, 둘째, AKTS software를 통해 물성측정 점 데이터로부터 적절한 kinetic 모델을 설정하고, 그 모델로부터 노화에 따른 특성변화를 예측하는 결과를 나타내었다.

열분해 반응조건에 따른 염화탄화수소 생성물 분포 특성 (Thermal Product Distribution of Chlorinated Hydrocarbons with Pyrolytic Reaction Conditions)

  • 김용제;원양수
    • 청정기술
    • /
    • 제16권3호
    • /
    • pp.198-205
    • /
    • 2010
  • 염화탄화수소 열분해와 생성물분포 특성을 고찰하기 위해 등온 관형 반응기를 이용해 두 가지 실험을 수행하였다. 첫 번째는 반응분위기에 따른 열분해 특성을 파악하기 위해 $H_2$ 또는 Ar 반응분위기에서 dichloromethane ($CH_2Cl_2$) 분해율과 생성물분포 특성을 고찰하였다. Ar 반응분위기($CH_2Cl_2$/Ar 반응계)에서 보다 $H_2$ 반응분위기($CH_2Cl_2/H_2$ 반응계)에서 $CH_2Cl_2$ 분해율이 더 높았다. 이는 반응성 기체인 $H_2$ 분위기에서 $CH_2Cl_2$ 분해를 촉진시키며 수소 첨가 탈염소반응을 통해 탈염소화된 탄화수소화합물을 생성시키며, 다환방향족탄화수소 (polycyclic aromatic hydrocarbon: PAH)와 soot 생성을 억제하기 때문이다. $CH_2Cl_2/H_2$ 반응계에서 주요생성물로 탈염소화합물인 $CH_3Cl,\;CH_4,\;C_2H_6,\;C_2H_4,\;HCl$ 등이 생성되었으며, 미량 생성물로 chloroethylene이 검출되었다. $CH_2Cl_2$/Ar 반응계에서는 탄소물질수지가 낮았으며 특히 반응온도 $750^{\circ}C$ 이상에서 탄소물질 수지가 더 낮게 나타났다. 주요 생성물로는 chloroethylene과 HCl이 검출되었으며, 미량 생성물로는 $CH_3Cl$$C_2H_2$이 검출되었다. 고온 Ar 반응분위기에서 $CH_4$ 주입에 따른 chloroform($CHCl_3$) 분해와 생성물분포 특성을 비교 고찰하였다. $CHCl_3$ 분해율을 비교해 보면 $CH_4$을 주입할 경우($CHCl_3/CH_4/Ar$ 반응계)가 $CH_4$을 주입하지 않았을 경우($CHCl_3$/Ar 반응계)보다 분해율이 낮았다. 이는 $CHCl_3$가 분해되면서 생성되는 활성도가 큰 이중라디칼(diradical)인 :$CCl_2$가 첨가물로 주입된 $CH_4$와 반응하여 소모됨으로써 $CHCl_3$ 분해율이 상대적으로 감소되기 때문이다. Ar 반응분위기에서 $CH_4$ 첨가 여부에 따라 $CHCl_3$이 분해되면서 생성되는 생성물 분포는 큰 차이를 나타내고 있었다. 앞에서 고찰된 각 반응계에서 분해율 비교와 생성물 분포특성을 고려하고 열화학이론 및 반응속도론을 기초로 주요 반응경로를 제시하였다.

촉매가 충진된 플라즈마 반응기에서의 Toluene 제거특성 (Characteristics of Toluene Destruction by Non-thermal Plasma in Packed with Catalyst Reactor)

  • 한소영;송영훈;차민석;김석준;최경일;신동준
    • 한국대기환경학회지
    • /
    • 제18권1호
    • /
    • pp.51-58
    • /
    • 2002
  • Destruction process of toluene using a wire-cylindrical BBD (Dielectric Barrier Discharge) reactor packed with catalysts was investigated to characterize the synergetic effects of non-thermal plasma and catalyst process. The catalysts used in the present study were ${\gamma}$-Al$_2$BO$_3$ and Pt/${\gamma}$-Al$_2$O$_3$. Under the numerous test conditions, specific energy density (SED (J/L)) and the conversion of toluene, defined as (1 -[C$_{f}$]/[C$_{i}$]), were measured. The test results showed that toluene decomposition efficiency followed the pseudo-first order in the case of plasma only process. The pseudo-first order process, however, was modified to pseudo-zeroth order reaction in the case of catalyst-assisted plasma process. This modification of the reaction order was verified based on a simple kinetic model proposed in the present study. Owing to the modification of reaction order, which resulted from the catalytic process, the specific energy to achieve the high removal efficiencies, i.e. 80~90%, was reduced significantly.y.y.

비열 플라즈마에 의한 NO의 산화에 탄화수소 첨가제가 미치는 영향 (Effect of Hydrocarbons on the Promotion of NO-$NO_2$ Conversion in NonThermal Plasma DeNOx Treatment)

  • 신현호;윤웅섭
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2000년도 제21회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.33-46
    • /
    • 2000
  • In the present study, a systematic chemical kinetic calculations were made to investigate the augmentation of NO-$NO_2$ conversion due to the addition of various hydrocarbons (methane, ethylene, ethane, propene, propane) in the nonthermal plasma treatment. It is included in the present conclusion that the reaction between hydrocarbon and oxygen radicals induced by electron collision, is believed to be a primarily process for triggering the overall NO oxidation and the eventual NOx reduction. Upon the completion of the initiating step, various radicals (OH, $NO_2$ etc.) successively produced by hydrocarbon decomposition form the primary path of NO-$NO_2$ conversion. When the initiating step is not activated, hydrocarbon consumption rate appeared to be very low, thereby the targeted level of NO conversion can only be achieved by the addition of more input energy. Present study showed ethylene and propene to have higher affinity with 0 radical under all conditions, thereby both of these hydrocarbons show very fast and efficient NO-$NO_2$ oxidation. It was also shown that propene is superior to ethylene in the aspect of NOx removal.

  • PDF

비열 플라즈마에 의한 NO의 산화에 탄화수소 첨가제가 미치는 영향 (Effect of Hydrocarbons on the Promotion of $NO-NO_{2}$ Conversion in NonThermal Plasma DeNOx Treatment)

  • 신현호;윤웅섭
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2000년도 제20회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.178-188
    • /
    • 2000
  • In the present study, a systematic chemical kinetic calculations were made to investigate the augmentation of $NO-NO_{2}$ conversion due to the addition of various hydrocarbons (methane, ethylene, ethane, propene, propane) in the nonthermal plasma treatment. It is included in the present conclusion that the reaction between hydrocarbon and oxygen radicals induced by electron collision, is believed to be a primarily process for triggering the overall NO oxidation and the eventual NOx reduction. Upon the completion of the initiating step, various radicals (OH, $HO_{2}$ etc.) successively produced by hydrocarbon decomposition form the primary path of $NO-NO_{2}$ conversion. When the initiating step is not activated, hydrocarbon consumption rate appeared to be very low, thereby the targeted level of NO conversion can only be achieved by the addition of more input energy. Present study showed ethylene and propene to have higher affinity with 0 radical under all conditions, thereby both of these hydrocarbons show very fast and efficient $NO-NO_{2}$ oxidation. It was also shown that propene is superior to ethylene in the aspect of NOx removal.

  • PDF

회전식 화학증착 장치 내부의 유동해석을 통한 최적 유량 평가 (COMPUTATIONAL ASSESSEMENT OF OPTIMAL FLOW RATE FOR STABLE FLOW IN A VERTICAL ROTATING DISk CHEMICAL VAPOR DEPOSITION REACTOR)

  • 곽호상
    • 한국전산유체공학회지
    • /
    • 제17권1호
    • /
    • pp.86-93
    • /
    • 2012
  • A numerical investigation is conducted to search for the optimal flow rate for a rotating-disk chemical vapor decomposition reactor operating at a high temperature and a low pressure. The flow of a gas mixture supplied into the reactor is modeled by a laminar flow of an ideal gas obeying the kinetic theory. The axisymmetric two-dimensional flow in the reactor is simulated by employing a CFD package FLUENT. With operating pressure and temperature fixed, numerical computations are performed by varying rotation rate and flow rate. Examination of the structures of flow and thermal fields leads to a flow regime diagram illustrating that there are a stable plug-like flow regime and a few unfavorable flow regimes induced by mass unbalance or buoyancy. The criterion for sustaining a plug-like flow regime is discussed based on a theoretical scaling argument. Interpretation of the flow regime map suggests that a favorable flow is attainable with a minimum flow rate at the smallest rotation rate guaranteeing the dominance of rotation effects over buoyancy.

Density Functional Studies of Ring-Opening Reactions of Li+-(ethylene carbonate) and Li+-(vinylene carbonate)

  • Han, Young-Kyu;Lee, Sang-Uck
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권1호
    • /
    • pp.43-46
    • /
    • 2005
  • Reaction energies were determined for reductive ring-opening reactions of Li$^+$-coordinated ethylene carbonate (EC) and vinylene carbonate (VC) by a density functional method. We have also explored the ring-opening of Li$^+$-EC and Li$^+$-VC by reaction with a nucleophile (CH$_3$O$^-$.) thermodynamically. Our thermodynamic calculations led us to conclude that the possible reaction products are CH$_3$OCH$_2$CH$_2$OCO$_2$Li (O$_2$-C$_3$ cleavage) for Li$^+$-EC +CH$_3$O$^-$., and CH$_3$OCHCHOCO$_2$Li (O$_2$-C$_3$ cleavage) and CH$_3$OCO$_2$CHCHOLi (C$_1$-O$_2$ cleavage) for Li$^+$-VC +CH$_3$O$^-$.. The opening of VC would occur at the C$_1$-O$_2$ side by a kinetic reason, although the opening at the O$_2$-C$_3$ side is more favorable thermodynamically.