• Title/Summary/Keyword: Kinetic Property

Search Result 85, Processing Time 0.025 seconds

Analysis of the Dye Absorption Behavior in Accordance with the Dye Structure in the Cold Pad Batch Dyeing of Cotton Knit (면니트의 CPB 염색에서 염료 구조에 따른 흡진 거동 분석)

  • Hong, Seok Il;Nam, Chang Woo;Lee, Woosung
    • Textile Coloration and Finishing
    • /
    • v.28 no.3
    • /
    • pp.175-182
    • /
    • 2016
  • To investigate dyeing behaviors in accordance with dye structure in cold pad batch dyeing of cotton knit, monochlorotriazine-vinylsulfone bifunctional dyes and monofluorotriazine-vinylsulfone bifunctional dyes were prepared. The spectral property and solubility of the dyes were tested and compared with the imported dyes. In addition, exhaustion behaviors of individual and mixed dye solutions were measured to examine the influence of dye structure on dyeing behavior in cold pad batch dyeing. The substantivity, fixation, migration index and half dyeing time were also calculated for further analysis of dyeing behavior of the prepared dyes. As a result, both dyes exhibited the superior solubilities and satisfactory light absorption properties. Also, monofluorotriazine-vinylsulfone bifunctional dyes showed moderate sensitivity to alkalinity and proper kinetic index values compared with the monochlorotriazine-vinylsulfone bifunctional dyes and the imported dyes. The results indicated monofluorotriazine-vinylsulfone bifunctional structure of the dye is suitable for cold pad batch dyeing.

A Study on the Change of Hand of Nettle Denim (네틀 데님소재의 태의 변화에 관한 연구)

  • Lee, Jungmin
    • Journal of Fashion Business
    • /
    • v.22 no.2
    • /
    • pp.107-117
    • /
    • 2018
  • Nettle fiber, a sustainable fiber, was applied to the fabrication of denim to identify changes in textile appearance and formation. For the weaving of nettle denim, nine specimens, distinguished by three kinds of composite use of nettle fiber and three stages of fabrication processes, were used. The kinetic characteristics of the nine specimens were measured by the KES-FB system, and the images of the specimens of finished denim textiles, captured with a CCD Camera, were analyzed. In terms of the extensibility (EM) of nettle denim, all specimens showed post-processing increase, thereby suggesting an easy transformation of the textile as a source material for denim fabric. The effects of washing on the woven formation of denim were also identified. The geometric roughness (SMD), the problematic property of bast-fiber-like nettle fiber, was found to be decreased by washing. In terms of the bending rigidity (B) of the textile, the post-processing shrinking percentage of elastic nettle denim was found to decrease; all specimens that underwent bio-washing only also manifested that post-processing elasticity increased. To improve the draping of nettle denim, a mixed spinning together with washing were found to be advantageous. In terms of the shear stiffness (G), which is closely associated with the appearance of clothes, the formation of textile was improved regardless of the types of processing, including bio-washing and bleach washing.

The effect of thermodynamic stability of casting solution on the membrane inversion process morphology and permeation properties in phase inversion process

  • Kim, Jeong-Hoon;Lee, Kew-Ho
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1995.04a
    • /
    • pp.26-27
    • /
    • 1995
  • Most of synthetic polymeric membranes used in ultrafiltration, reverse osmosis and microfiltration processes are prepared by phase inversion(or phase separation) technique. In this technique, a homogeneous polymer solution is cast into thin film or hollow fiber shape and then immersed into a nonsolvent coagulant bath. The exchange of solvent and nonsolvent across the interface between casting solution and coagu!ant can make the casting solution phase-separate and form a membrane with a symmetric or asymmetric structure. Because of importance of this technique in membrane field, many investigations have been dedicated to elucidate the mechanism of membrane formation by phase inversion technique.[1-10] These investigation have suggested that the structure formation and permeation properties of phase inversion membrane depend on the variables such as the nature and content of casting solution and coagulant, temperature of casting solution and coagulant, and the diffusional exchange rate of solvent and nonsolvent etc. which can be related to the thermodynamic and kinetic properties of the casting system. The variables such as the nature and content of casting solution can also be the important factor affecting the structure formation and permeation property of the phase inversion membrane.

  • PDF

Fabrication of Ti/Ir-Ru electrode by spin coating method for electrochemical removal of copper

  • Kim, Joohyun;Bae, Sungjun
    • Environmental Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.646-653
    • /
    • 2019
  • Recovery of valuable metals in the industrial wastewater and sludge has attracted an attention owing to limited metallic resources in the earth. In this study, we firstly fabricated Ti/Ir-Ru electrodes by spin coating technique for effective recovery of Cu in electrowinning process. Two different Ti/Ir-Ru electrodes were fabricated using 100 and 500 mM of precursors (i.e., Ir-Ru). SEM-EDX and AFM revealed that Ir and Ru were homogenously distributed on the surface of Ti plate by the spin coating, in particular the electrode prepared by 500 mM showed distinct boundary line between Ir-Ru layer and Ti substrate. XRD, XPS, and cyclic voltammetry also revealed that characteristics of IrO2, RuO2, and TiO2 and its electrocatalytic property increased as the concentration of coating precursor increased. Finally, we carried out Cu recovery experiments using two Ti/Ir-Ru as anodes in electrowinning process, showing that both anodes showed a complete removal of Cu (1 and 10 g/L) within 6 h reaction, but much higher kinetic rate constant was obtained by the anode prepared by 500 mM. The findings in this study can provide a fundamental knowledge for surface characteristics of Ti/Ir-Ru electrode prepared by spin coating method and its potential feasibility for effective electrowinning process.

Elucidation of Electrode Reaction of EuCl3 in LiCl-KCl Eutectic Melts through CV Curve Analysis

  • Kim, Tack-Jin;Jung, Yong-Ju;Kim, Si-Hyung;Paek, Seung-Woo;Ahn, Do-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.863-866
    • /
    • 2011
  • The electrode reaction of $Eu^{3+}$ in a LiCl-KCl eutectic melt has been re-examined using cyclic voltammetry (CV). In this work, for the first time, the kinetic details of a $Eu^{3+}/Eu^{2+}$ redox system have been completely elucidated, along with the thermodynamic property, through a curve fitting applied to experimental CV data, which were obtained in a wide scan rate range of 0.5 to 10 V/s. The simulated results showed an excellent fit to all experimental CV data simultaneously, even though the curve fittings were performed within a large dynamic range of initial transfer coefficient values, formal potentials, and standard rate constants. As a result, a proper formal potential, transfer coefficient, and standard rate constant for the $Eu^{3+}/Eu^{2+}$ redox system were successfully extracted using the CV curve fitting.

Adsorption of Phenol on Mesoporous Carbon CMK-3: Effect of Textural Properties

  • Haque, Enamul;Khan, Nazmul Abedin;Talapaneni, Siddulu Naidu;Vinu, Ajayan;JeGal, Jong-Geon;Jhung, Sung-Hwa
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.1638-1642
    • /
    • 2010
  • Mesoporous carbon CMK-3s with different textural properties have been used for the adsorption of phenol to understand the necessary physicochemical properties of carbon for the efficient removal of phenol from contaminated water. The kinetic constants (both pseudo-second order and pseudo-first-order kinetics) increase with increasing pore size of carbons. The maximum adsorption capacities correlate well with micropore volume compared with surface area or total pore volume even though large pore (meso or macropore) may contribute partly to the adsorption. The pore occupancies also explain the importance of micropore for the phenol adsorption. For efficient removal of phenol, carbon adsorbents should have large micropore volume and wide pore size for high uptake and rapid adsorption, respectively.

Regulatory Mechanism of L-Alanine Dehydrogenase from Bacillus subtilis

  • Kim, Su Ja;Kim, Yu Jin;Seo, Mi Ran;Jeon, Bong Suk
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.12
    • /
    • pp.1217-1221
    • /
    • 2000
  • L-alanine dehydrogenase from Bacillus subtilis exhibits allosteric kinetic properties in the presence of $ZN^{2+}$. $ZN^{2+}$ induces the binding of substrate (L-alanine) to be cooperative at pH 8.0. The effect of pH variation between pH 7.0 and pH 10.0 on the inhibition by $ZN^{2+}$ correlates with the pH effect on the $K_m$ values for L-alanine within these pH range indicating that $ZN^{2+}$ and substrate compete for the same site. No such cooperativity is induced by $ZN^{2+}$ when the reaction is carried out at pH 10. At this higher pH, $ZN^{2+}$ binds with the enzyme with lower affinity and noncompetitive with respect to L-alanine. Inhibition of L-alanine dehydrogenase by $ZN^{2+}$ depends on the ionic strength. Increase in KCI concentration reduced the inhibition, but allosteric property in $ZN^{2+}$ binding is conserved. A model for the regulatory mechanism of L-alanine dehydrogenase as a noncooperative substrate-cooperative cofactor allosteric enzyme, which is compatible in both concerted and the sequential allosteric mechanism, is proposed.

Lightweight and Performance of Anti-Collision Strength of Automobiles Based on Carbon Fiber Composites

  • Zhang, Hongtao
    • Korean Journal of Materials Research
    • /
    • v.29 no.9
    • /
    • pp.525-531
    • /
    • 2019
  • The widespread use of automobiles has greatly increased energy demand and exhaust gas pollution. In order to save energy, reduce emissions and protect the environment, making lightweights automobiles is an effective measure. In this paper, carbon fiber composites and automobile B-pillars are briefly introduced, and then the mechanical properties and impact resistance of the DC590 steel B-pillars and carbon fiber composites B-pillars are simulated by the ABAQUS finite element software. The results show that the quality of compound B-pillars is reduced by 50.76 % under the same dimensions, and the mechanical property of unit mass is significantly better than that of metal B-pillars. In the course of a collision, the kinetic energy of the two B-pillars is converted into internal energy, but the total energy remains the same; the converted internal energy of the composite B-pillars is greater, the deformation is smaller and the maximum intrusion and intrusion speed is also smaller, indicating that the anti-collision performance of the composite B-pillars is excellent. In summary, the carbon fiber composites can not only reduce the quality of the B-pillars, but also improve their anti-collision performance.

Fluoride Sorption Property of Lanthanum Hydroxide (란탄수산화물의 불소 흡착 특성)

  • Kim, Jung-Hwan;Park, Hyun-Ju;Jung, Kyung-Hun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.7
    • /
    • pp.714-721
    • /
    • 2010
  • This research was undertaken to evaluate the feasibility of lanthanum hydroxide for fluoride removal from aqueous solutions. A batch sorption experiments were conducted to study the influence of various factors such as pH, contact time, initial fluoride concentration and temperature on the sorption of fluoride on lanthanum hydroxide. The optimum fluoride removal was observed in the $pH_{eq}{\leq}8.8$. Sorption equilibrium of fluoride on lanthanum hydroxide was better described by the Freundlish isotherm model than by the Langmuir isotherm model. The adsorption energy obtained from D-R model was 9.21 kJ/mol indicating an ion-exchange process as primary adsorption mechanism. The pseudo-second-order kinetic model described well the experimental kinetic data. Thermodynamic parameters such as ${\Delta}Go^{\circ}$, ${\Delta}H^{\circ}$ and ${\Delta}S^{\circ}$ indicated that the nature of fluoride sorption is spontaneous and endothermic. The used lanthanum hydroxide could be regenerated by washing with NaOH solution. Also, the results applied to real ground water indicate that fluoride selectivity and removal capacity of lanthanum hydroxide were superior to those of PA anion-exchange resin.

Effect of Carbon Dioxide in Fuel on the Performance of PEMFC (연료중의 이산화탄소 불순물에 의한 고분자전해질연료전지의 성능변화 연구)

  • Seo, Jung-Geun;Kwon, Jun-Taek;Kim, Jun-Bom
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.1
    • /
    • pp.42-46
    • /
    • 2008
  • Even though fuel cell have high efficiency when pure hydrogen from gas tank is used as a fuel source, it is more beneficial to generate hydrogen from city gas (mainly methane) in residential application such as domestic or office environments. Thus hydrogen is generated by reforming process using hydrocarbon. Unfortunately, the reforming process for hydrogen production is accompanied with unavoidable impurities. Impurities such as CO, $CO_2$, $H_2S$, $NH_3$, $CH_4$, and $CH_4$ in hydrogen could cause negative effects on fuel cell performance. Those effects are kinetic losses due to poisoning of the electrode catalysts, ohmic losses due to proton conductivity reduction including membrane and catalyst ionomer layers, and mass transport losses due to degrading catalyst layer structure and hydrophobic property. Hydrogen produced from reformer eventually contains around 73% of $H_2$, 20% or less of $CO_2$, 5.8% of less of $N_2$, or 2% less of $CH_4$, and 10ppm or less of CO. This study is aimed at investigating the effect of carbon dioxide on fuel cell performance. The performance of PEM fuel cell was investigated using current vs. potential experiment, long run(10 hr) test, and electrochemical impedance measurement when the concentrations of carbon dioxide were 10%, 20% and 30%. Also, the concentration of impurity supplied to the fuel cell was verified by gas chromatography(GC).