• Title/Summary/Keyword: Kinetic Parameters

Search Result 966, Processing Time 0.027 seconds

Silicon Carbide Coating by Thermal Decomposition of tetramethylsilane

  • YOON Kyung-Hoon
    • Proceedings of the Korean Ceranic Society Conference
    • /
    • 1986.12a
    • /
    • pp.211-225
    • /
    • 1986
  • Silicon carbide coating has been studied using a graphite substrate, a mixture of tetramethylsilane and hydrogen or argon at deposition temperature (T) of 950 to $1200^{\circ}C$ total pressure of 20 to 50 torr and carrier gas flow rate of 0 to 901/h. Deposition kinetic study has shown that a transition, from a surface reaction limited process to a diffusion limited one, takes place near $1100^{\circ}C$. Deposition rate depends directly upon the experimental parameters. The influence of the main process parameters is also discussed to relate the physiochemical properties of the coating to the deposition conditions.

  • PDF

The Kinetics of Non-Enzymatic Browning Reaction in Green Tea During Storage at Different Water Activities and Temperatures (온도와 수분활성을 달리한 녹차 저장중의 비효소적 갈변)

  • Kim, Young-Suk;Jung, Yeon-Hwa;Chun, Soon-Sil;Kim, Mu-Nam
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.17 no.3
    • /
    • pp.226-232
    • /
    • 1988
  • Non-enzymatic browning is a carbohydrate dehydration reaction, accelerated thorough the interaction of amino compounds. Reaction depends on several factors including temperature, reactant concentration, pH, water activity and specific ion concentrations, and result in progressive development of brown pigments in the affected food systems. The present study was designed to utilize a kinetic approach to analyze the effect of temperature and water activity on the browning development in green ten. The green tea was controlled at aw of 0.33, 0.44, 0.52 and 0.65 using saturated salt solutions and then stored at 35,45 and $55^{\circ}C$. Author portion of the sample of which the water activities were controlled in the same manner was stored at 35 and $55^{\circ}C$ alternately with 7 days interval. Simplified kinetic models were used to obtain the various kinetic parameters for browning development in green tea subjected to accelerated shelf-life tests(ASLT). The reaction of browning development was zero order. The activation energies calculated from Arrhenius plot ranged $1.5{\sim}2.4kcal/mole$ and $Q_{10}$ values were between 1.07 and 1.12. These kinetic parameters were then used to predict browning development under the nonsteady storage. Assessed from the parameters the shelf-lives at $25^{\circ}C$, the time to reach 1.02 O.D./g solid at which severe brown color change could be detectable, ranged 57 to 113 days and showed decrease with increase in aw. The predicted shelf-lives at different water activities were a little higher than actual values.

  • PDF

Identification of progressive collapse pushover based on a kinetic energy criterion

  • Menchel, K.;Massart, T.J.;Bouillard, Ph.
    • Structural Engineering and Mechanics
    • /
    • v.39 no.3
    • /
    • pp.427-447
    • /
    • 2011
  • The progressive collapse phenomenon is generally regarded as dynamic. Due to the impracticality of nonlinear dynamic computations for practitioners, an interest arises for the development of equivalent static pushover procedures. The present paper proposes a methodology to identify such a procedure for sudden column removals, using energetic evaluations to determine the pushover loads to apply. In a dynamic context, equality between the cumulated external and internal works indicates a vanishing kinetic energy. If such a state is reached, the structure is sometimes assumed able to withstand the column removal. Approximations of these works can be estimated using a static computation, leading to an estimate of the displacements at the zero kinetic energy configuration. In comparison with other available procedures based on such criteria, the present contribution identifies loading patterns to associate with the zero-kinetic energy criterion to avoid a single-degree-of-freedom idealisation. A parametric study over a family of regular steel structures of varying sizes uses non-linear dynamic computations to assess the proposed pushover loading pattern for the cases of central and lateral ground floor column failure. The identified quasi-static loading schemes are shown to allow detecting nearly all dynamically detected plastic hinges, so that the various beams are provided with sufficient resistance during the design process. A proper accuracy is obtained for the plastic rotations of the most plastified hinges almost independently of the design parameters (loads, geometry, robustness), indicating that the methodology could be extended to provide estimates of the required ductility for the beams, columns, and beam-column connections.

Efficiency comparison of advanced oxidation processes for ciprofloxacin removal from aqueous solutions: Sonochemical, sono-nano-chemical and sono-nano-chemical/persulfate processes

  • Igwegbe, Chinenye Adaobi;Ahmadi, Shahin;Rahdar, Somayeh;Ramazani, Alireza;Mollazehi, Abdol Raufeh
    • Environmental Engineering Research
    • /
    • v.25 no.2
    • /
    • pp.178-185
    • /
    • 2020
  • The aim of this study is to investigate the degradation of ciprofloxacin (CIP) from its aqueous solutions via different advanced oxidation processes (AOP). The effects of persulfate (PS) concentration, pH, zinc oxide nanoparticles (ZnO-NPs) dose, initial CIP concentration, and reaction time on the degradation of CIP were studied. It was found that the sonochemical (US) degradation is a less efficient process (with removal efficiency of 36%) compared to the sono-nano-chemical (US/ZnO) process which resulted in removal efficiency of 70%. Maximum removal of 99% was obtained using the sono-nano-chemical/PS (US/ZnO/PS) process at a frequency of 60 kHz, time of 10 min, pH of 7, initial CIP concentration of 25 mg/L, and PS concentration of 476.06 mg/L. The addition of PS and ZnO-NPs to the process enhanced the rate of US degradation of CIP. In addition, the kinetic parameters for the US/ZnO/PS process were obtained by fitting the kinetic data into the pseudo-first-order and pseudo-second-order kinetic models. The kinetic data was found to fit into the pseudo-first-order kinetic model than the pseudo-second-order model. The results showed that the AOP using US/ZnO/PS is a promising technique for the treatment of ciprofloxacin containing solutions.

Kinetics of Horseradish Peroxidase-Catalyzed Nitration of Phenol in a Biphasic System

  • Kong, Mingming;Zhang, Yang;Li, Qida;Dong, Runan;Gao, Haijun
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.2
    • /
    • pp.297-305
    • /
    • 2017
  • The use of peroxidase in the nitration of phenols is gaining interest as compared with traditional chemical reactions. We investigated the kinetic characteristics of phenol nitration catalyzed by horseradish peroxidase (HRP) in an aqueous-organic biphasic system using n-butanol as the organic solvent and ${NO_2}^-$ and $H_2O_2$ as substrates. The reaction rate was mainly controlled by the reaction kinetics in the aqueous phase when appropriate agitation was used to enhance mass transfer in the biphasic system. The initial velocity of the reaction increased with increasing HRP concentration. Additionally, an increase in the substrate concentrations of phenol (0-2 mM in organic phase) or $H_2O_2$ (0-0.1 mM in aqueous phase) enhanced the nitration efficiency catalyzed by HRP. In contrast, high concentrations of organic solvent decreased the kinetic parameter $V_{max}/K_m$. No inhibition of enzyme activity was observed when the concentrations of phenol and $H_2O_2$ were at or below 10 mM and 0.1 mM, respectively. On the basis of the peroxidase catalytic mechanism, a double-substrate ping-pong kinetic model was established. The kinetic parameters were ${K_m}^{H_2O_2}=1.09mM$, ${K_m}^{PhOH}=9.45mM$, and $V_{max}=0.196mM/min$. The proposed model was well fit to the data obtained from additional independent experiments under the suggested optimal synthesis conditions. The kinetic model developed in this paper lays a foundation for further comprehensive study of enzymatic nitration kinetics.

Modeling of the Nitrate Adsorption Kinetics onto $ZnCl_2$ Treated Granular Activated Carbon (염화아연으로 표면개질된 입상활성탄의 질산성질소 흡착속도의 모델링 연구)

  • Ji, Min-Kyu;Jung, Woo-Sik;Bhatnagar, Amit;Jeon, Byong-Hun
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.3
    • /
    • pp.21-26
    • /
    • 2008
  • Nitrate adsorption from aqueous solutions onto zinc chloride ($ZnCl_2$) treated coconut Granular Activated Carbon (GAC) was studied in a batch mode at two different initial nitrate concentrations (25 and 50 mg/L). The rate of nitrate uptake on prepared media was fast in the beginning, and 50% of adsorption was occurred within 10 min. The adsorption equilibrium was achieved within one hour. The mechanism of adsorption of nitrate on $ZnCl_2$ treated coconut GAC was investigated using four simplified kinetic models : the rate parameters were calculated for each model. The kinetic analysis indicated that pseudo-second-order kinetic with pore-diffusion-controlled was the best correlation of the experimental kinetic data in the present adsorption study.

Kinetics and Equilibrium Study on β-glucosidase under High Hydrostatic Pressure (고압에서 β-glucosidase 반응속도론 및 평형에 관한 연구)

  • Han, Jin Young;Lee, Seung Ju
    • Food Engineering Progress
    • /
    • v.15 no.3
    • /
    • pp.214-220
    • /
    • 2011
  • $\beta$-Glucosidase enzyme reaction under high hydrostatic pressure was investigated in terms of physical chemistry. A model substrate (p-nitrophenyl-${\beta}$-D-glucopyranoside(pNPG)) was used, and the pressure effects on the enzymatic hydrolysis (pNPG${\rightarrow}$pNP) at 25 MPa, 50 MPa, 75 MPa, and 100 MPa were analyzed. Two parts of the reaction such as kinetic and equilibrium stages were considered for mathematical modelling, and their physicochemical parameters such as forward and inverse reaction constants, equilibrium constant, volume change by pressure, etc. were mathematically modeled. The product concentration increased with pressure, and the two stages of reaction were observed. Prediction models were derived to numerically compute the product concentrations according to reaction time over kinetic to equilibrium stages under high pressure condition. Conclusively, the $\beta$-Glucosidase enzyme reaction could be activated by pressurization within 100 MPa, and the developed models were very successful in their prediction.

Kinetic and Thermodynamic Studies of Brilliant Green Adsorption onto Carbon/Iron Oxide Nanocomposite (탄소/산화철 나노복합재료의 Brilliant Green 흡착에 대한 반응속도론적, 열역학적 연구)

  • Ahmad, Rais;Kumar, Rajeev
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.1
    • /
    • pp.125-130
    • /
    • 2010
  • In the present work, we have investigated the adsorption efficiency of carbon/iron oxide nanocomposite towards removal of hazardous brilliant green (BG) from aqueous solutions. Carbon/iron oxide nanocomposite was prepared by chemical precipitation and thermal treatment of carbon with ferric nitrate at $750^{\circ}C$. The resulting material was thoroughly characterized by TEM, XRD and TGA. The adsorption studies of BG onto nanocomposite were performed using kinetic and thermodynamic parameters. The adsorption kinetics shows that pseudo-second-order rate equation was fitted better than pseudo-first-order rate equation. The experimental data were analyzed by the Langmuir and Freundlich adsorption isotherms. Equilibrium data was fitted well to the Langmuir model with maximum monolayer adsorption capacity of 64.1 mg/g. The thermodynamic parameters were also deduced for the adsorption of BG onto nanocomposite and the adsorption was found to be spontaneous and endothermic.

A Parametric Study on the Sorption of U(VI) onto Granite (U(VI)의 화강암 수착에 대한 매개변수적 연구)

  • Min-Hoon Baik;Won-Jin Cho;Pil-Soo Hahn
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.2 no.2
    • /
    • pp.135-143
    • /
    • 2004
  • An experimental study on the sorption of U(VI) onto a Korean granite was performed as a function of the geochemical parameters such as contact time, pH, ionic strength, and carbonate concentration using a batch procedure. The distribution coefficient,$K_d$, was about 1-200 mL/g depending on the experimental conditions. The sorption of U(VI) onto granite particles was greatly dependent upon the contact time, pH, and carbonate concentration, but insignificantly dependent on the ionic strength. It was noticed that the sorption of U(VI) onto granite particles was highly correlated with the uranium speciation in the solution, which was dependent on the pH and carbonate concentrations. It was deduced from the kinetic sorption experiment that a two-step first-order kinetic behavior could dominate the kinetic sorption of U(VI) onto granite particles. In the alkaline range of a pH above 7, U(VI) sorption was greatly decreased and this might be due to the formation of anionic U(VI)-carbonate aqueous complexes as predicted by the speciation calculations.

  • PDF