• Title/Summary/Keyword: Kinetic Constant

Search Result 597, Processing Time 0.025 seconds

Changes of Physicochemical Characteristics of Acanthopanax senticosus Extract during Storage (오가피 추출액의 저장조건에 따른 이화학적 특성변화)

  • Chung Hun-Sik;Youn Kwang-Sup
    • Food Science and Preservation
    • /
    • v.12 no.3
    • /
    • pp.204-208
    • /
    • 2005
  • This study was conducted to investigate the effects of temperature and packaging on the quality characteristics of hot-water extract from Acanthopanax senticosus. The herb samples, ground and sifted($8{\sim}20$ mesh), were extracted by a boiling($100^{\circ}C$) water under the atmospheric pressure for 2 hrs. The extract was packed with out nylon PE(0.08 mm) pouch and kept under the condition(40 and $60^{\circ}C$) for 10 days. The reduction of turbidity, pH, polyphenol amount and DPPH radical scavenging activity of extract were retarded by packaging under the low temperature. Titratable acidity was increased with packaging at high temperature. Soluble solid content was not affected by packaging and temperature condition. The changes of quality characteristics followed the first-order reaction rate. Arrhenius equation was applied to determine the effects of temperature on the reaction rate constant, showing high $R^2$. These results suggested that packaging under lower temperature can be utilized for maintaining the quality of A senticosus extract.

Effect of Zirconia Addition on Mechanical Properties of Spinel/Zirconia-glass Dental Crown Composites Prepared by Melt-infiltration (용융침투법으로 제조한 인공치관용 스피넬/지르코니아-유리 복합체의 기계적 특성에 미치는 지르코니아 첨가효과)

  • Lee, Deuk-Yong;Kim, Byung-Soo;Jang, Joo-Wung;Lee, Myung-Hyun;Park, Il-Seok;Kim, Dae-Joon
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.11
    • /
    • pp.1028-1034
    • /
    • 2002
  • Spinel/zirconia-glass composites prepared by melt-infiltration were fabricated to investigate the effect of zirconia addition on mechanical and optical properties of the composites. The infiltration distance was parabolic with respect to time as described by the Washburn equation and the penetration rate constant, K, decreased due to the reduction in pore size as the amount of zirconia rose. Although the optimum strength(308 MPa) of the Spinel/zirconia-glass composites was observed when the zirconia was added up to 20 wt%, K and transmittance decreased as the zirconia content rose. In conclusion, it suggested that the positive effect of strength as a result of the addition of zirconia was not effective.

Preparation of Porous Carbon by Chlorination of SiC (SiC의 염소화에 의한 다공성 탄소 입자 제조)

  • Park, Hoey Kyung;Park, Kyun Young;Kang, Tae Won;Jang, Hee Dong
    • Particle and aerosol research
    • /
    • v.8 no.4
    • /
    • pp.173-180
    • /
    • 2012
  • SiC particles, 8.3 ${\mu}m$ in volume average diameter, were chlorinated in an alumina tubular reactor, 2.4 cm in diameter and 32 cm in length, with reactor temperature varied from 100 to $1200^{\circ}C$. The flow rate of the gas admitted to the reactor was held constant at 300 cc/min, the mole fraction of chlorine in the gas at 0.1 and the reaction time at 4 h. The chlorination was negligibly small up to the temperature of $500^{\circ}C$. Thereafter, the degree of chlorination increased remarkably with increasing temperature until $900^{\circ}C$. As the temperature was increased further from 900 to $1200^{\circ}C$, the increments in chlorination degree were rather small. At $1200^{\circ}C$, the chlorination has nearly been completed. The surface area of the residual carbon varied with chlorination temperature in a manner similar to that with the variation of chlorination degree with temperature. The surface area at $1200^{\circ}C$ was 912 $m^{2}/g$. A simple model was developed to predict the conversion of a SiC under various conditions. A Langmuir-Hinshelwood type rate law with two rate constants was employed in the model. Assuming that the two rate constants, $k_{1}$ and $k_{2}$, can be expressed as $A_{1e}^{-E_{1}/RT}$ and $A_{2e}^{-E_{2}/RT}$, the four parameters, $A_{1}$, $E_{1}$, $A_{2}$, and $E_{2}$ were determined to be 32.0 m/min, 103,071 J/mol, 2.24 $m^{3}/mol$ and 39,526 J/mol, respectively, through regression to best fit experimental data.

TURBULENT FLOW CHARACTERISTICS OF CHANNEL FLOW USING LARGE EDDY SIMULATION WITH WALL-FUNCTION(FDS CODE) (벽 함수가 적용된 대와류 모사(FDS 코드)의 채널에서의 난류 유동 특성)

  • Jang, Yong-Jun;Ryu, Ji-Min;Ko, Han Seo;Park, Sung-Huk;Koo, Dong-Hoe
    • Journal of computational fluids engineering
    • /
    • v.20 no.3
    • /
    • pp.94-103
    • /
    • 2015
  • The turbulent flow characteristics in the channel flow are investigated using large eddy simulation(LES) of FDS code, built in NIST(USA), in which the near-wall flow is solved by Werner-Wengle wall function. The periodic flow condition is applied in streamwise direction to get the fully developed turbulent flow and symmetric condition is applied in lateral direction. The height of the channel is H=1m, and the length of the channel is 6H, and the lateral length is H. The total grid is $32{\times}32{\times}32$ and $y^+$ is kept above 11 to fulfill the near-wall flow requirement. The Smagorinsky model is used to solve the sub-grid scale stress. Smagorinsky constant $C_s$ is 0.2(default in FDS). Three cases of Reynolds number(10,700, 26,000, 49,000.), based on the channel height, are analyzed. The simulated results are compared with direct numerical simulation(DNS) and particle image velocimetry(PIV) experimental data. The linear low-Re eddy viscosity model of Launder & Sharma and non-linear low-Re eddy viscosity model of Abe-Jang-Leschziner are utilized to compare the results with LES of FDS. Reynolds normal stresses, Reynolds shear stresses, turbulent kinetic energys and mean velocity flows are well compared with DNS and PIV data.

Aeration Effect on Degradation of Veterinary Antibiotics in Swine Slurry

  • Seo, Youngho;Lim, Soojeong;Choi, Seungchul;Heo, Sujeong;Yoon, Byeongsung;Park, Younghak;Hong, Daeki
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.51 no.1
    • /
    • pp.8-15
    • /
    • 2018
  • A portion of the veterinary antibiotics administrated to livestock are generally excreted via feces and urine. Tetracyclines and tylosin have a greater priority of environmental risk in Korea based on the consumption and the potential to reach soil and water environment. The antibiotics in animal byproducts need to be reduced or eliminated before they are applied to agricultural lands through composting or other agricultural practices. The objective of the study was to investigate the effect of aeration on degradation of antibiotics during storage of swine slurry. Two antibiotics, tetracycline (TC) and tylosin (TYL), were detected from the swine slurry used in the study. One hour aeration per day for 62 days reduced TC concentration from 199 to $43ng\;L^{-1}$ compared with $104ng\;L^{-1}$ without aeration. Aeration for three and six hours decreased TC level to 30 and $23ng\;L^{-1}$, respectively. The dissipation of TC was fitted with a first-order kinetic model. Aeration for 1, 3, and 6 hours every day increased the first-order rate constant, k, from $0.011day^{-1}$ under anaerobic condition to 0.022, 0.026, and $0.037day^{-1}$, respectively. For TYL, aeration during storage of swine slurry enhanced k from $0.0074day^{-1}$ to 0.014, 0.018, and $0.031day^{-1}$ for 1, 3, and 6 hours per day, respectively. For liquid swine slurry, biotic processes can be more effective for dissipation of antibiotics than abiotic processes because of low organic matter and high water content. These results suggest that aeration can increase the degradation rate of antibiotics during storage of swine slurry.

Evaluation of External Carbon Source on the 2 Stage Denitrification Process by Simulation of GPS-X (GPS-X 시뮬레이션을 이용한 2단탈질 공정에서 외부탄소원 적용성 평가)

  • Chung, Chang-Wha;Shim, Yu-Seop;Kim, Tae-Hyung;Park, Chul-Hwi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.1
    • /
    • pp.37-48
    • /
    • 2004
  • The purpose of this study was to evaluate adaptability of external carbon source using GPS-X program in pilot plant composed with 2-stage denitrification process. The result from analysis of pilot plant operation and GPS-X simulation showed that effluent concentration could be simulated similarly by modifying operation conditions, such as DO concentration, C/N ratio and other calibrated parameter. In order to satisfy the standard of the effluent water quality on T-N of 20mg/L, it required approximately 3.1 of C/N ratio and 50% of nitrogen removal efficiency when influent T-N is 36.9mg/L. To maintain the stable water quality of the receiving water, the effluent T-N concentration should be less than 10-15mg/L and the appropriate C/N ratio to remove nitrogen was 4.27-6.82. The analysis of sensitivity to kinetic coefficient and reaction constant showed that $Y_H$ and ${\mu}_{mAUT}$ were most sensitive to nitrate and ammonia nitrogen, relatively and sensitivity coefficient of their were 1.32, 1.98. It was concluded that as $Y_H$ decreased and ${\mu}_{mAUT}$ increased, the reaction rates of denitrification and nitrification increased and the removal efficiencies of $NO_3{^-}-N$ and $NH_4{^+}-N$ improved.

The physical properties and the dyeability of the easily dyeable polyester yarn under atmospheric pressure (상압가염형 폴리에스테르 섬유의 물성과 염색성)

  • Kim, Tae Gyeong;Yun, Seok Han;Sin, Sang Yeop;Im, Yong Jin;Jo, Gyu Min
    • Textile Coloration and Finishing
    • /
    • v.13 no.6
    • /
    • pp.33-33
    • /
    • 2001
  • The physical properties and the dyeability of the easily dyeable polyester yarn(EDY) were investigated and compared with those of regular polyester (REG-PET). The EDY, copolymerized with small amount of polyethylene glycol(PEG), showed higher intensity of aliphatic CH peak in IR spectrum, lower density and lower compactness than those of the REG-PET from the analysis of IR, density gradient column and XRD respectively. In the physical properties, the EDY has lowers $T_g,\;T_m$, specific stress and initial modulus, and also has higher strain than that of the REG-PET. The EDY can be dyed under atmospheric pressure and its dyeing rate was faster than REG-PET due to low $T_d$, and this seems to be caused by the increased flexibility of Polymer chain in amorphous region of the EDY due to the copolymerization of PEG.ns being within the experimental error, the average values of lifetim. $\tau$(t) are taken for further calculations. Rate constants such as Stern-Volmer quenching constants K$_{sv}$, quenching rate parameters k$_q$ and k''$_q$, static quenching constant V and kinetic distance r are determined using the modified Stern-Volmer eq.tion and sphere of action static quenching model. In order to see whether the reactions are diffusion limited, equations k$_q$ = e$^{-Eq/RT}$ and k''$_q$ = e$^{-Eq/RT}$ are used to determine the values of E$_q$ and E''$_q$, the activati. energies for collisional quenching and the values of E$_q$ are 14.53, 17.28 and 16.20 kJ mole$^{-1}$ for MPNO1, MPNO2 and 2-PI respectively and the values of E''$_q$ are 14.62 and 17.73 for MPNO1 and MPNO2 respectively. From the magnitudes of various quantities it has.een concluded that the reactions are diffusion limited and the observed positive deviations in the S-V plot are due to static and dynamic quenching.

A Fundamental Study on the Methane Conversion of Agriculture, Forestry and Fisheries Wastes (농·축 ·수산 폐기물의 메탄전환에 관한 기초연구)

  • Hong, Soon-Seok;Park, Sang-Jeon;Hong, Chong-Joon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.6 no.1
    • /
    • pp.31-42
    • /
    • 1998
  • A fundamental study on methane conversion for the collection organic wastes of agriculture, forestry and fishers was performed in a laboratory scale. As a result, selected Run B sample were obtained 18.41 C/N Ratio and 168.96 mg/L TCOD; Under the biochemical methane potential test, theoretical and actual methane generation was 313.6 mg/L VS added and 234.2 mg/L VS added, respectively; However, methane conversion from Run B were occurred 74% by anaerobic digestion. By the first order reaction kinetics, kinetic constant were $0.2476d^{-1}$ for Run B. Three steps fill-up filter reactor was evaluated methane content 16% up to promote than blank reactor; TCOD and SCOD have reduced 44.7% and 44.2%, respectively.

  • PDF

Biodegradation Kinetics of Diesel in a Wind-driven Bioventing System

  • Liu, Min-Hsin;Tsai, Cyuan-Fu;Chen, Bo-Yan
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.5
    • /
    • pp.8-15
    • /
    • 2016
  • Bioremediation, which uses microbes to degrade most organic pollutants in soil and groundwater, can be used in solving environmental issues in various polluted sites. In this research, a wind-driven bioventing system is built to degrade about 20,000 mg/kg of high concentration diesel pollutants in soil-pollution mode. The wind-driven bioventing test was proceeded by the bioaugmentation method, and the indigenous microbes used were Bacillus cereus, Achromobacter xylosoxidans, and Pseudomonas putida. The phenomenon of two-stage diesel degradation of different rates was noted in the test. In order to interpret the results of the mode test, three microbes were used to degrade diesel pollutants of same high concentration in separated aerated batch-mixing vessels. The data derived thereof was input into the Haldane equation and calculated by non-linear regression analysis and trial-and-error methods to establish the kinetic parameters of these three microbes in bioventing diesel degradation. The results show that in the derivation of μm (maximum specific growth rate) in biodegradation kinetics parameters, Ks (half-saturation constant) for diesel substance affinity, and Ki (inhibition coefficient) for the adaptability of high concentration diesel degradation. The Ks is the lowest in the trend of the first stage degradation of Bacillus cereus in a high diesel concentration, whereas Ki is the highest, denoting that Bacillus cereus has the best adaptability in a high diesel concentration and is the most efficient in diesel substance affinity. All three microbes have a degradation rate of over 50% with regards to Pristane and Phytane, which are branched alkanes and the most important biological markers.

Topology Optimization of Railway Brake Pad by Contact Analysis (접촉해석에 의한 철도차량용 제동패드의 형상 최적화)

  • Goo, Byeong-Choon;Na, In-Kyun
    • Tribology and Lubricants
    • /
    • v.30 no.3
    • /
    • pp.177-182
    • /
    • 2014
  • To stop a high speed train running at the speed of 300 km/h, the disc brake for the train should be able to dissipate enormous kinetic energy of the train into frictional heat energy. Sintered pin-type metals are mostly used for friction materials of high speed brake pads. A pad comprises several friction pins, and the topology, length, flexibility, composition, etc. have a great influence on the tribological properties of the disc brake. In this study, the topology of the friction pins in a pad was our main concern. We presented the optimization of the topology of a railcar brake pad with nine-pin-type friction materials by thermo-mechanical contact analysis. We modeled the brake pad with/without a back plate. To simulate a continuous braking, the pad or friction materials were rotated at constant velocity on the friction surface of the disc. We varied the positions of the nine friction materials to compare the temperature distributions on the disc surface. In a non-optimized brake pad, the distance between two neighboring friction materials in the radial direction from the rotational center of the disc was not equal. In an optimized pad, the distance between two neighboring friction materials in the radial direction was equal. The temperature distribution on the disc surface fluctuated more for the former than the latter. Optimizing the pad reduced the maximum temperature of the brake disc by more than 10%.