• 제목/요약/키워드: Kinetic Constant

검색결과 596건 처리시간 0.024초

Peroxy Acid Oxidations: A Kinetic and Mechanistic Study of Oxidative Decarboxylation of $\alpha$-Keto Acids by Peroxomonophosphoric Acid

  • Radhasyam Panda
    • Bulletin of the Korean Chemical Society
    • /
    • 제22권8호
    • /
    • pp.909-913
    • /
    • 2001
  • The kinetics of oxidative decarboxylation of pyruvic acid and benzoylformic acid by peroxomonophosphoric acid (PMPA) in aqueous medium have been investigated. The reaction follows second order-first order each in PMPA and substrate concentration a t constant pH. The reactivity of different peroxo species in the oxidation has been determined. Activation energy and thermodynamic parameters have been computed. A plausible mechanism consistent with the observed results is proposed.

Relationship Between Enhancement of Electrostriction and Decrease of Activation Energy in Porcine Pancreatic Lipase Catalysis

  • PARK HYUN;LEE KI-SEOG;PARK SEON-MI;LEE KWANG-WON;KIM AUGUSTINE YONGHWI;CHI YOUNG-MIN
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권3호
    • /
    • pp.587-594
    • /
    • 2005
  • The contribution of electrostriction of water molecules to the stabilization of the negatively charged tetrahedral transition state of a lipase-catalyzed reaction was examined by means of kinetic studies involving high-pressure and solvent dielectric constant. A good correlation was observed between the increased catalytic efficiency of lipase and the decreased solvent dielectric constant. When the dielectric constant of solvents was lowered by 5.00 units, the losses of activation energy and free energy of activation were 7.92 kJ/mol and 11.24 kJ/mol, respectively. The activation volume for $k_{cat}$ decreased significantly as the dielectric constant of solvent decreased, indicating that the degree of electrostriction of water molecules around the charged tetrahedral transition state has been enhanced. These observations demonstrate that the increase in the catalytic efficiency of the lipase reaction with decreasing dielectric constant resulted from the stabilization of electrostatic energy for the formation of an oxyanion hole, and that this stabilization was caused by the increase of electrostricted water around the charged tetrahedral transition state. Therefore, we conclude that the control of solvent dielectric constant can stabilize the tetrahedral transition state, thus lowering the activation energy.

Kinetics of $CO_2$ Absorption in Aqueous AMP (2-amino-2-methyl -1-propanol) Solutions

  • Park, Moon-Ki
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • 제2권1호
    • /
    • pp.85-90
    • /
    • 1998
  • The reaction rate of $CO_2$ with 2-amino-2-methyl-1-propanol (AMP), MEA monoethanolamine(MEA) and diethanolamine (DEA) in aqueous solutions has been determined using a stirred vessel with a plane gas-liquid interface over a wide range of concentrations of amines at different temperatures. The results show that the overall reaction rate is first order with respect to both $CO_2$ and amine. The reaction rate constant varies with temperature according to the relationship which agrees with the experimental data. The proposed interpretation is that the kinetic rate determining step is a reaction of $CO_2$ with amine to form carbamic acid which is then totally and immediately ionized.

  • PDF

MEK와 톨루엔의 촉매연소 속도특성 (Catalytic Incineration Kinetics of Gaseous MEK and Toluene)

  • 이재동
    • 환경위생공학
    • /
    • 제14권2호
    • /
    • pp.113-119
    • /
    • 1999
  • In this study, the incineration of MEK and toluene was studied on a Pt supported alumina catalyst at temperature range from 200 to $350^{\circ}C$. An approach based on the Mars-van Krevelen rate model was used to explain the results. The object of this study was to study the kinetic behavior of the platinum catalyst for deep oxidation. The conversions of MEK and toluene were increased as the inlet concentration was decreased and the reaction temperature was increased. The maximum deep conversion of MEK and toluene were 91.81% and 55.69% at $350^{\circ}C$, respectively. The ${\kappa}_3$ constant increases with temperature faster than the ${\kappa}_1$ constant, that is, the surface concentration of ($VOCs{\cdots}O$) is higher than that of (O) at higher temperature according to the Mars-van Krevelen mechanism. Also the activation energy of toluene was larger than MEK for toluene is aromatic compound which have stronger bonding energy.Therefore, the catalytic incineration kinetics of MEK and toluene with Mars-van Krevelen mechanism could be used as the basic data for industrial processes.

  • PDF

Biodegradation Kinetics of Benzene by Pseudomonas aeruginosa

  • 박춘하;김동주
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2001년도 추계학술발표회
    • /
    • pp.235-238
    • /
    • 2001
  • Monod kinetics에 관련된 주요 생분해 파라미터를 도출하기 위하여 microcosm 규모의 배치실험에서 BTEX 화합물에 대해 분해능이 우수한 Pseudomonas aeruginosa을 이용해 다양한 농도의 벤젠에 대한 분해기작을 고찰하였다. 벤젠의 생분해율(D)과 Maximumspecific growth rate ($\mu$$_{max}$)는 기질의 농도가 증가할수록 높아지다가 최고점에 도달 후에 점차적으로 감소하였으며 이것은 어느 한계점 이상의 벤젠 농도가 미생물의 생분해에 방해 요소로 작용한다는 것을 나타낸다. 그러나 미생물에 의한 벤젠 분해의 상관관계를 나타내는 yield coefficient(Y)는 벤젠의 초기 농도가 낮을수록 높은 값을 나타내었다. Microbial decay constant( b)와 half-saturation constant(K$_{c}$)는 각각 0.21~0.48day$^{-1}$와 218mg/$\ell$로서 문헌값 보다 높은 수치를 나타내었다. 실험으로부터 결정된 생분해 파라미터들은 초기 벤젠 농도에 따라 큰 차이를 보이므로 생분해 모델링에 사용할 파라미터는 기질농도에 따라 적절하게 선택되어야 한다고 사료된다.

  • PDF

Kinetics and Mechanism of Pyridinolysis of Aryl Dithiocyclopentanecarboxylates in Acetonitrile

  • Oh, Hyuck-Keun
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권8호
    • /
    • pp.2357-2360
    • /
    • 2010
  • Kinetic studies on the pyridinolysis of aryl dithiocyclopentanecarboxyaltes 2 were carried out at $60.0^{\circ}C$ in acetonitrile. In the aminolysis of 2, the $\beta_X$ values were 0.5 - 0.8 with anilines, and there was no breakpoint. However, in the pyridinolysis of 2, biphasic Bronsted plots were obtained, with a change in slope from a large value ($\beta_X{\cong}0.7$) to a small value ($\beta_X{\cong}0.4$) at $pK_{a}^0$ = 5.2. This was attributed to a change in the rate-limiting step from breakdown to the formation of a zwitterionic tetrahedral intermediate, $T^{\pm}$, in the reaction path, with an increase in the basicity of the pyridine nucleophile. An obvious change in the cross-interaction constant ${\rho}_{XZ}$ from a large positive ($\rho_{XZ}$ = +1.02) value to a small negative value (${\rho}_{XZ}$ = -0.17) supports the proposed mechanistic change.

Oxidation Kinetics of Carbon Fibers

  • Roh, Jae-Seung
    • Carbon letters
    • /
    • 제6권1호
    • /
    • pp.1-5
    • /
    • 2005
  • Isotropic pitch based carbon fibers were exposed to isothermal oxidation in carbon dioxide gas to study the activation kinetics under the temperature of 800~$1100^{\circ}C$. The kinetic equation $f=1-{\exp}(-at^b)$ was introduced and the constant b was obtained in the range of 0.92~1.25. It was shown that the activated carbon fiber shows the highly specific surface area (SSA) when the constant b comes close to 1. The activation kinetics were evaluated by the reaction-controlling regime (RCR) according to changes of the apparent activation energy with changes of the conversion. It was observed that the activation energies increase from 47.6 to 51.2 kcal/mole with the conversion increasing from 0.2 to 0.8. It was found that the pores of the activated carbon fiber under the chemical reaction were developed well through the fiber.

  • PDF

Loss of HCN from the Pyrazine Molecular Ion: A Theoretical Study

  • Jung, Sun-Hwa;Yim, Min-Kyoung;Choe, Joong-Chul
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권7호
    • /
    • pp.2301-2305
    • /
    • 2011
  • The potential energy surface (PES) for the loss of HCN or HNC from the pyrazine molecular ion was determined based on quantum chemical calculations using the G3//B3LYP method. Four possible dissociation pathways to form four $C_3H_3N^{+{{\bullet}}$ isomers were examined. A Rice-Ramsperger-Kassel-Marcus quasi-equilibrium theory model calculation was performed to predict the dissociation rate constant and the product branching ratio on the basis of the obtained PES. The resultant rate constant for the HCN loss agreed with the previous experimental result. The kinetic analysis predicted that the formation of $CH=CHN{\equiv}CH^{+{\bullet}}+HCN$ was predominant, which occurred by three consecutive steps, a C-C bond cleavage to form a linear intermediate, a rearrangement to form an H-bridged intermediate, and elimination of HCN.

A Note on the Outflow Boundary Conditions in Modeling the East Sea Circulation

  • Seung, Young-Ho;Cho, Kyoung-Ho
    • Journal of the korean society of oceanography
    • /
    • 제33권4호
    • /
    • pp.212-218
    • /
    • 1998
  • Three different outflow boundary conditions are considered in modeling the East Sea circulation. The first one is that of the conventional constant volume transport (CT). The second one is the Orlanski radiation boundary condition (OR). The third one is that of the constant sea level just outside the outflow boundary (SL). In the third condition, the outflow current is set to be driven by the sea level differences across the outflow open-boundary lines, based on the recent knowledge that the Tsushima Current is driven by the sea level differences across the inflow and outflow boundaries. In case of OR it takes too much time to reach the steady state, resulting in a large increase of Tsushima Current Water in the basin and low level of kinetic energy. Both CT and SL reach the steady state in a relatively short time. However, SL is more recommendable, because it is based on physical background and generates less numerical noises than CT.

  • PDF

Delignification Kinetics of Trema orientalis (Nalita) in Kraft Pulping

  • Jahan, M. Sarwar;Rubaiyat, A.;Sabina, R.
    • 펄프종이기술
    • /
    • 제39권5호
    • /
    • pp.7-11
    • /
    • 2007
  • Kraft pulping of Trema orientalis (Nalita) was studied in order to find kinetic data for delignification. Pulping runs were carried out in the temperature range of $160-180\;^{\circ}C$ under constant and well-defined conditions. The delignification was found to be first order with respect to residual lignin and was chemically controlled. The rate of delignification reaction was increased 1.11-1.23 for $10\;^{\circ}C$ temperature increase in the range of $160-180\;^{\circ}C$ range. A mean value of 93% of lignin was removed at the transition between bulk and residual delignification. The influence of cooking temperature on the rate constant was expressed by an Arrhenius-type equation. The obtained activation energy of the delignification reaction was 6,164 cal/mol. The transition point between bulk and residual phase was shifted to lower lignin and carbohydrate yield with the increase of temperature.