• 제목/요약/키워드: Kinematics Analysis

검색결과 634건 처리시간 0.036초

In vivo 3D Kinematics of Axis of Rotation in Malunited Monteggia Fracture Dislocation

  • Kim, Eugene;Park, Se-Jin;Jeong, Haw-Jae;Ahn, Jin Whan;Shin, Hun-Kyu;Park, Jai Hyung;Lee, Mi Yeon;Tsuyoshi, Murase;Sumika, Ikemototo;Kazuomi, Sugamoto;Choi, Young-Min
    • Clinics in Shoulder and Elbow
    • /
    • 제17권1호
    • /
    • pp.25-30
    • /
    • 2014
  • Background: Normal elbow joint kinematics has been widely studied in cadaver, whilst in vivo study, especially of the forearm, is rare. Our study analyses, in vivo, the kinematics of normal forearm and of malunited forearm using a three-dimensional computerized simulation system. Methods: We examined 8 patients with malunited Monteggia fracture and 4 controls with normal elbow joint. The ulna and radius were reconstructed from CT data placing the forearm in three different positions; full pronation, neutral, and full supination using computer bone models. We analyzed the axis of rotation 3-dimentionally based on the axes during forearm rotation from full pronation to full supination. Results: Axis of rotation of normal forearm was pitch line, with a mean range of 2 mm, from full pronation to full supination, connecting the radial head center proximally and ulnar fovea distally. In normal forearm, the mean range was 1.32 mm at the proximal radioulnar joint and 1.51 mm at the distal radioulnar joint. However in Monteggia fracture patients, this range changed to 7.65 mm at proximal and 4.99 mm at distal radoulnar joint. Conclusions: During forearm rotation, the axis of rotation was constant in normal elbow joint but unstable in malunited Monteggia fracture patients as seen with radial head instability. Therefore, consideration should be given not only to correcting deformity but also to restoring AOR by 3D kinematics analysis before surgical treatment of such fractures.

Implementation of Human Motion Following Robot through Wireless Communication Interface

  • Choi, Hyoukryeol;Jung, Kwangmok;Ryew, SungMoo;Kim, Hunmo;Jeon, Jaewook;Nam, Jaedo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.36.3-36
    • /
    • 2002
  • $\textbullet$ Motion capture system $\textbullet$ Exoskeleton mechanism $\textbullet$ Kinematics analysis $\textbullet$ Man-machine Interface $\textbullet$ Wireless communication $\textbullet$ Control algorithm

  • PDF

해석적인 기구학을 이용한 다물체계의 동력학해석 (Dynamics of multibody systems with analytical kinematics)

  • 이돈용;염영일;정완균
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1994년도 Proceedings of the Korea Automatic Control Conference, 9th (KACC) ; Taejeon, Korea; 17-20 Oct. 1994
    • /
    • pp.289-292
    • /
    • 1994
  • In this paper, the equations of motion are constructed systematically for multibody systems containing closed kinematic loops. For the displacement analysis of the closed loops, we introduce a new mixed coordinates by adding to the reference coordinates, relative coordinates corresponding to the degrees of freedom of the system. The mixed coordinates makes easy derive the explicit closed form solution. The explicit functional relationship expressed in closed form is of great advantages in system dimension reduction and no need of an iterative scheme for the displacement analysis. This forms of equation are built up in the general purpose computer program for the kinematic and dynamic analysis of multiboty systems.

  • PDF

평지를 걸어갈 때 하지운동과 작용하는 하중에 대한 생체역학적 해석 (A Biomechanical Analysis of Lower Extremity Kinematics and Kinetics During Level Walking)

  • 손권;최기영;정민근
    • 대한기계학회논문집
    • /
    • 제18권8호
    • /
    • pp.2101-2112
    • /
    • 1994
  • A two-dimensional biomechanical model was developed in order to calculated the lower extremity kinematics and kinetics during level walking. This model consists of three segments : the thigh, calf, and foot. Each segment was assumed to be a rigid body ; its motion to be planar in the sagittal plane. Five young males were involved in the gait experiment and their anthropometric data were measured for the calculation of segmental masses and moments of inertial. Six markers were used to obtain the kinematic data of the right lower extremity for at least three trials of walking at 1.0m/s, and simultaneously a Kistler force plate was used to obtain the foot-floor reaction data. Based on the experimental data acquired for the stance phase of the right foot, calculated vertical joint forces reached up to 0.91, 1.05, and 1.11 BW(body weight) at the hip, the knee, the ankle joints, respectively. The flexion-extension moments reached up to 69.7, 52.3, and 98.8 Nm in magnitude at the corresponding three joints. It was found that the calculated joint loadings of a subject were statistically the same for all his three trials, but not the same for all five subjects involved in the gait study.

불가사리 채집용 4절 링크 매니퓰레이터의 최적 설계 (Optimal Design of a Four-bar Linkage Manipulator for Starfish-Capture Robot Platform)

  • 김지훈;진상록;김종원;서태원;김종원
    • 한국정밀공학회지
    • /
    • 제30권9호
    • /
    • pp.961-968
    • /
    • 2013
  • In this paper, we propose an optimal design for starfish capturing manipulator module with four-bar linkage mechanism. A tool link with compliance is attached on the four-bar linkage, and the tool repeats detaching starfish from the ground and putting it into the storage box. Since the tool is not rigid and the manipulator is operating underwater, the trajectory of the tool tip is determined by its dynamics as well as kinematics. We analyzed the trajectory of the manipulator tool tip by quasi-static analysis considering both kinematics and dynamics. In optimization, the lengths of each link and the tool stiffness are considered as control variables. To maximize the capturing ability, capturing stroke of the four-bar manipulator trajectory is maximized. Reaction force and reaction moment, and other kinematic constraints were considered as inequality constraints.