• 제목/요약/키워드: Kinematic modeling

검색결과 224건 처리시간 0.031초

고속주행용 궤도차량의 동적해석 (Dynamic Anlaysis of High Mobility Tracked Vehicles)

  • 김상두;이승종
    • 한국자동차공학회논문집
    • /
    • 제9권1호
    • /
    • pp.205-215
    • /
    • 2001
  • In this study, modeling and analysis procedure for the dynamic analysis of a high mobility tracked vehicle system were studied. The vehicle model used in this investigation is assumed to be consist of two kinematically decoupled subsystems. The chassis subsystem consists of chassis frame, sprocket, support rollers, road wheels, idler wheel, road wheel arms and idle wheel arm, while the track subsystem is represented as a closed kinematic chain consisting of track links and end connectors interconnected by revolute joints with bushing. Nonlinear contact force module describing the interaction between track link, and sprocket, idler wheel, road wheel, support roller, ground was used. The effects of road wheel arms and idler wheel arm due to tension adjuster are also considered.

  • PDF

Modeling of the Flexible Disk Grinding Process: Part - I Model Developcment

  • Yoo, Song-Min
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국제학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.302-306
    • /
    • 1993
  • In this study, a new model for flexible disk grinding process will be proposed. A grinding mechanism with a grinding disk attached to the rubber platen has been introduced. Since the spinning axis is fixed and only the disk is deflected with respect to this axis, earlier model is not adequate to represent this proces. A new dynamic process model includes an assumption that the disk is deflected locally around the middle of its radial span between the spinning axis and the disk tip instead of several continuous deflection points along the radial span of the disk. Detailed kinematic analysis is proposed as for the removed portion during the process. Cutting force comonent and depth of cut profile trend is compared with the measured result.

  • PDF

Nylon 66의 무비례 하중에 대한 과응력 모델 (An Overstress Model for Non-proportional Loading of Nylon 66)

  • 호광수
    • 대한기계학회논문집A
    • /
    • 제25권12호
    • /
    • pp.2056-2061
    • /
    • 2001
  • Non-proportional loading tests of Nylon 66 at room temperature exhibit path dependent behavior and plasticity-relaxation interactions. The uniaxial formulation of the viscoplasticity theory based on overstress (VBO), which has been used to reproduce the nonlinear strain rate sensitivity, relaxation, significant recovery and cyclic softening behaviors of Nylon 66, is extended to three-dimensions to predict the response in strain-controlled, comer-path tests. VBO consists of a flow law that is easily written for either the stress or the strain as the independent variable. The flow law depends on the overstress, the difference between the stress and the equilibrium stress that is a state variable in VBO. The evolution law of the equilibrium stress in turn contains two additional state variables, the kinematic stress and the isotropic stress. The simulations show that the constitutive model is competent at modeling the deformation behavior of Nylon 66 and other solid polymers.

304 스테인리스강의 점소성 특성에 관한 연구 (The Rate Dependent Deformation Behavior of AISI Type 304 Stainless Steel at Room Temperature)

  • 호광수
    • 소성∙가공
    • /
    • 제16권2호
    • /
    • pp.101-106
    • /
    • 2007
  • Uniaxial displacement controlled tests were performed on annealed Type 304 stainless steel at room temperature. A servo-controlled testing machine and strain measurement on the gage length were employed to measure the response to a given input. The test results exhibit that the flow stress increases nonlinearly with the strain rate and the relaxed stress at the end of the relaxation periods depends strongly on the strain rate preceding the relaxation test. The rate-dependent inelastic deformation behavior is simulated using a new unified viscoplasticity model that has the rate-dependent format of nonlinear kinematic hardening rule, which plays a key role in modeling the rate dependence of relaxation behavior. The model does not employ yield or loading/unloading criteria and consists of a flow law and the evolution laws of two tensor and one scalar-valued state variables.

정밀 스테이지의 기구 동역학 해석 (Kinematics and Dynamics Analysis of Precision stage)

  • 주재환;임홍재;장시열;정재일
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.677-682
    • /
    • 2007
  • Recently, a precision stage is widely used in the fields of the nano technology. In this paper, the precision stage which consists of linear motor, vision system, light source system and controller, is designed and developed for nano imprint machine. Stiffness design considering resonance frequency is important for the precision stage. A virtual machine simulation is useful for machine development the early design stage. Kinematic and dynamic simulations of XYZ stage are performed. To consider the resonance frequency and vibration effects flexible multibody dynamics are utilized with FE modeling of the structural components.

  • PDF

차륜형 이동로봇의 오도메트리 보정을 위한 실험적 주행시험경로 설계 (Design of Experimental Test Tracks for Odometry Calibration of Wheeled Mobile Robots)

  • 정창배;문창배;정다운;정우진
    • 로봇학회논문지
    • /
    • 제9권3호
    • /
    • pp.160-169
    • /
    • 2014
  • Odometry using wheel encoder is a common relative positioning technique for wheeled mobile robots. The major drawback of odometry is that the kinematic modeling errors are accumulated when the travel distance increases. Therefore, accurate calibration of odometry is required. In several related works, various schemes for odometry calibration are proposed. However, design guidelines of test tracks for odometry calibration were not considered. More accurate odometry calibration results can be achieved by using appropriate test track because the position and orientation errors after the test are affected by the test track. In this paper, we propose the design guidelines of test tracks for odometry calibration schemes using experimental heading errors. Numerical simulations and experiments clearly demonstrate that the proposed design guidelines result in more accurate calibration results.

퍼지 알고리즘을 이용한 자율주행 이동로봇의 설계에 관한 연구 (A Study on Autonomous Driving Mobile Robot by Using Fuzzy Algorith)

  • 서현재;임영도
    • 한국통신학회논문지
    • /
    • 제31권4B호
    • /
    • pp.278-284
    • /
    • 2006
  • 본 논문에서는 퍼지 알고리즘을 사용하여 지능형 자율주행로봇을 설계하였다. 설계된 로봇은 이동시 장애물을 인식하여 이를 회피하며 안전하게 도달하는데 목적이 있다. 또한 로봇의 이동에 있어서 로봇의 안정성과 주행성의 성능을 높이기 위해 보조 바퀴에 서스펜션을 장착하였다. 이렇게 설계된 지능형 자율주행로봇은 병원이나 빌딩내부의 좁은 실내에서 노약자나 장애인이 원하는 목적지 까지 안전하게 갈수 있다.

터빈 실(Seal)의 유동 해석 (Labyrinth Seal Effects in Turbines)

  • 송범호;송성진
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2000년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.158-162
    • /
    • 2000
  • Secondary flows in gas turbines, especially those associated tip clearance and labyrinth seals, have become a focus of interest for engine manufacturers. In the past, many analytical and experimental studies, which focused solely on the flows in either tip clearances or seals, have been conducted. This paper presents an analytical model that describes the flow response in a single stage turbine induced by a finite sealing gap at the turbine rotor. The flow is assumed to be axisymmetric and the analysis is done in the meridional plane. Upon going through the stage, the radially uniform upstream flow is assumed to split into two streams one associated with the seal and the other which has gone through the blades. The former is referred to as the leakage flow, and the latter is referred the as the passage flow. The passage flow is assumed to be inviscid and incompressible while the flow in the seal can be modeled as either inviscid or viscous. Thus, the model is capable of predicting the kinematic effects of labyrinth seals on the turbine flow field.

  • PDF

사각보행기의 고속 보행제어를 위한 동적 모델링 및 해석 (A Dynamic Modeling and Analysis for High-speed Walking of a Quadrupedal Robot)

  • 강성철;유홍희;김문상;이교일
    • 대한기계학회논문집A
    • /
    • 제21권5호
    • /
    • pp.756-768
    • /
    • 1997
  • In order to control a dynamic gait of quadrupedal walking robot, the equations of motion of the whole mechanism are required. In this research, the equations of motion are formulated analytically using Kane's dynamic approach. As a dynamic gait model, a trot gait has been adopted. The degree of freedom of whole mechanism could be reduced to 7 by idealizing the kinematic feature of the trot gait. Using the equations of motion formulated, the results of the redundant-joint torque analysis and the simulation of dynamic walking motion are presented.

임펠러의 역공학과 5축가공 (Reverse Engineering and 5-axis NC machining of impeller)

  • 신재광;홍성균;장동규;이희관;양균의
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1795-1798
    • /
    • 2003
  • This paper presents a method for impeller modeling by the reverse engineering and the 5-axis machining. The impeller is composed of pressure surface, suction surface and leading edge, and so on. The impeller is modeled by using the characteristic curves of impeller such as hub curves, shroud curves and leading edge. The characteristic curves are extracted from the scanned data. The hub curves and shroud curves are generated by intersection between blade surface and hub boundary and shroud boundary. respectively. A sample impeller machining is performed by tool path plan and post-processing with inverse kinematic solution.

  • PDF