• Title/Summary/Keyword: Kinematic errors

Search Result 133, Processing Time 0.028 seconds

AN INVERSTIGATION OF THE DYNAMIC ERRORS OF THE REMOTE-INSTANTANEOUS FLOWRATE MEASUREMENT DUE TO PARAMETER CHANGES

  • Kim, Do-Tae;Yokota, Shinichi;Nakano, Kazuo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1712-1717
    • /
    • 1991
  • The paper describes estimation errors of unsteady flowrate measurements due to parameter changes in a quasi-remote instantaneous flowrate measurement method (abbreviate as QIFM) and an instantaneous flowrate measurement method using two points pressure measurements (abbreviate as TPFM). By introducing error performance index, the influence of parameter changes on the accuracy, and dynamic response of the estimated unsteady flowrate are evaluated. Of four parameters, the variation of the length of the pipeline and speed of sound produce large errors in the estimated unsteady flowrate during transient periods. The effect of kinematic viscosity of the working fluid(oil) is relatively insensitive in unsteady flowrate estimation.

  • PDF

A Generalized Analysis of Volumetric Error of a Machine Tool Machining a Sculpture (자유곡면을 가공하는 공작기계 체적오차의 일반화 해석)

  • 고태조
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.4 no.3
    • /
    • pp.39-47
    • /
    • 1995
  • This paper suggests generalize mathematica mode for the benefit of volumetric error analysis of a multi-axis machine tool machining a sculptured surfaces. The volumetric error, in this paper, is defined as a three dimensional error at the cutting point, which is caused by the geometric errors and the kinematic errors of each axis and alignment errors of the cutting tool. The actual cutting position is analyzed based on the form shaping model including a geometric error of the moving carriage, where a form shaping model is derived from the homogeneous transformation matrix. Then the volumetric error is obtained by calculating the position difference between the actual cutting position and the ideal one calculated from a Nonuniform Rational B-Spline named as NURES. The simulation study shows the effectiveness for predicting the behavior of machining error and for the method of error compensation.

  • PDF

A study on the chucking alignment error analysis in coaxial grinding of ferrule (페룰 동축연삭시 척킹 오차 해석)

  • 김동길;김영태;이상조
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.9-14
    • /
    • 2002
  • Ferrule is widely used as fiber optic connecters. In fiber-optic communications, the shape accuracy such as coaxiality and cylindricity of ferrule affects insertion loss. When coaxial grinding of ferrule supported by two pin, pin alignment and chucking accuracy are very important. In this research, the kinematic behavior of the ferrule center is investigated in the case where cone-shaped center pins and round circle hales which make contact with each other near the edge of the holes, using homeogenous coordinate transformation and numerical analysis. The obtained results are as follows: The alignment errors between center pins alone do not affect the rotation accuracy of ferrule. The alignment errors between center holes cause a sinusoidal displacement of ferrule. And the maximum displacement of ferrule centers increase in proportion to the center pin angle in the case of a fixed alignment errors

  • PDF

Design of Experimental Test Tracks for Odometry Calibration of Wheeled Mobile Robots (차륜형 이동로봇의 오도메트리 보정을 위한 실험적 주행시험경로 설계)

  • Jung, Changbae;Moon, Changbae;Jung, Daun;Chung, Woojin
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.3
    • /
    • pp.160-169
    • /
    • 2014
  • Odometry using wheel encoder is a common relative positioning technique for wheeled mobile robots. The major drawback of odometry is that the kinematic modeling errors are accumulated when the travel distance increases. Therefore, accurate calibration of odometry is required. In several related works, various schemes for odometry calibration are proposed. However, design guidelines of test tracks for odometry calibration were not considered. More accurate odometry calibration results can be achieved by using appropriate test track because the position and orientation errors after the test are affected by the test track. In this paper, we propose the design guidelines of test tracks for odometry calibration schemes using experimental heading errors. Numerical simulations and experiments clearly demonstrate that the proposed design guidelines result in more accurate calibration results.

A Reverse Kinematic Approach for Error Analysis of a Machine tool Using Hemispherical Helix Ball bar test (반구상의 나선형 볼바측정을 통한 공작기계 오차해석의 역기구학적 접근)

  • Yang, Seung-Han;Kim, Ki-Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.3
    • /
    • pp.143-151
    • /
    • 2001
  • Machine tool errors have to be characterized and predicted to improve machine tool accuracy. A real-time error compensation system has been developed based on volumetric error synthesis model which is composed of machine tool errors. This paper deals with new algorithm about verification of machine tool errors. This new algorithm uses a simplified volumetric error synthesis model. This simplified model is constructed with only main components among the error components of the machine. The main error components are analyzed by ball bar test of hemispherical helix. The novel measurement method using ball bar system has many advantages which are more efficient, easier to use than conventional measurement system.

  • PDF

A Reverse Kinematic Approach for Error Analysis of a Machine Tool Using Helical Ball Bar Test (헬리컬 볼바 측정을 사용한 공작기계 오차해석의 역기구학적 접근)

  • 김기훈;양승한
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.703-707
    • /
    • 2000
  • Machine tool errors have to be characterized and predicted to improve machine tool accuracy. A real-time error compensation system has been developed based on volumetric error synthesis model which is composed of machine tool errors. This paper deals with new algorithm about verification of machine tool errors. This new algorithm uses a simplified volumetric error synthesis model. This simplified model is constructed with only main components among the error components of the machines. This main error components are analyzed by three-dimensional helical ball bar test. By substituting result of helical ball bar test fer simplified model, we could find that obtained error components are closed to real error components.

  • PDF

Evaluation of Accuracy and Effectiveness of Real-Time Kinematic GPS Surveying Technology Using Carrier Phase Observations (반송파 위상관측을 이용한 실시간 Kinematic GPS 측량기법의 정확도와 효용성 평가)

  • 이진덕;정한상
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.17 no.3
    • /
    • pp.301-309
    • /
    • 1999
  • Real-time kinematic (RTK) GPS surveying which allows centimeter level accuracy of three-dimensional coordinates without post-processing has become recognized as a major advance in GPS technology. Employing On-The-Fly initialization technique, the RTK system can escape from cycle slip problems that have affected as a main obstacle factor in traditional kinematic and static approaches. The objective of this research was to evaluate accuracy and effectiveness of the RTK-GPS surveying. First, the continuous RTK observation of a base line was conducted for the purpose of finding out the repeatability of the RTK surveying and the results which were then compared against results from static surveying showed RMS errors of $\pm{3mm}\;and\;\pm{13mm}$ for their respective horizontal and vertical components. On a test network of 30 stations covering the small area, the results of RTK testing were compared against those from not only post-processing kinematic and rapid-static surveyings but conventional surveyings and also the efficiency of RTK were analyzed. In addition, geoid heights which were derived by combination of GPS and spirit leveling about all of the points within the network were compared against those derived by the PNU95 and EGM96 models respectively.

  • PDF

Determination of Identifiable Parameters and Selection of Optimum Postures for Calibrating Hexa Slide Manipulators

  • Park, Jong-Hyuck;Kim, Sung-Gaun;Rauf, Abdul;Ryu, Je-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2737-2742
    • /
    • 2003
  • Kinematic calibration enhances absolute accuracy by compensating for the fabrication tolerances and installation errors. Effectiveness of calibration procedures depends greatly on the measurements performed. While the Cartesian postures are measured completely, all of the geometric parameters can be identified to their true values. With partial pose measurements, however, few geometric parameters may not be identifiable and effectiveness of the calibration results may vary significantly within the workspace. QR decomposition of the identification Jacobian matrix can reveal the non-identifiable parameters. Selecting postures for measurement is also an important issue for efficient calibration procedure. Typically, the condition number of the identification Jacobian is minimized to find optimum postures. This paper investigates identifiable parameters and optimum postures for four different calibration procedures - measuring postures completely with inverse kinematic residuals, measuring postures completely with forward kinematics residuals, measuring only the three position components, and restraining the mobility of the end-effector using a constraint link. The study is performed for a six degree-of-freedom fully parallel HexaSlide type paralle manipulator, HSM. Results verify that all parameters are identifiable with complete posture measurements. For the case of position measurements, one and for the case of constraint link, three parameters were found non-identifiable. Optimal postures showed the same trend of orienting themselves on the boundaries of the search space.

  • PDF

Calibration of Parallel Manipulators using a New Measurement Device (새로운 측정장비를 이용한 병렬구조 로봇의 보정에 관한)

  • Rauf, Abdul;Kim, Sung-Gaun;Ryu, Je-Ha
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1494-1499
    • /
    • 2003
  • Kinematic calibration is a process whereby the actual values of geometric parameters are estimated so as to minimize the error in absolute positioning. Measuring all components of Cartesian posture, particularly the orientation, can be difficult. With partial pose measurements, all parameters may not be identifiable. This paper proposes a new device that can be used to identify all kinematic parameters with partial pose measurements. Study is performed for a six degree-of-freedom fully parallel Hexa Slide manipulator. The device, however, is general and can be used for other parallel manipulators. The proposed device consists of a link with U joints on both sides and is equipped with a rotary sensor and a biaxial inclinometer. When attached between the base and the mobile platform, the device restricts the end-effector's motion to five degree-of-freedom and can measure position of the end-effector and one of its rotations. Numerical analyses of the identification Jacobian reveal that all parameters are identifiable. Computer simulations show that the identification is robust for the errors in the initial guess and the measurement noise.

  • PDF

Study on the Identifiable Parameters and Optimum Postures for Calibrating Parallel Manipulators (병렬구조 로봇의 보정을 위한 보정 가능 변수 판별과 최적 자세 선정에 관한 연구)

  • Park, Jong-Hyuck;Kim, Sung-Gaun;Rauf, Abdul;Ryu, Je-Ha
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1476-1481
    • /
    • 2003
  • Kinematic calibration enhances absolute accuracy by compensating for the fabrication tolerances and installation errors. Effectiveness of calibration procedures depends greatly on the measurements performed. This paper investigates identifiable parameters and optimum postures for four different calibration procedures - measuring postures completely with inverse kinematic residuals, measuring postures completely with forward kinematics residuals, measuring only the three position components, and restraining the mobility of the end-effector using a constraint link. The study is performed for a six degree-of-freedom fully parallel HexaSlide type parallel manipulator, HSM. Results verify that all parameters are identifiable with complete posture measurements. For the case of position measurements, one and for the case of constraint link, three parameters were found non-identifiable. Selecting postures for measurement is also an important issue for efficient calibration procedure. Typically, the condition number of the identification Jacobian is minimized to find optimum postures. Optimal postures showed the same trend of orienting themselves on the boundaries of the search space.

  • PDF