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1. INTRODUCTION 
Recently, increasing attention has been given to the 

applications of parallel manipulators in different areas. 
Parallel manipulators are favored for their high accuracy, 
increased rigidity, and better speed characteristics. Accuracy 
of the parallel manipulators, however, can be greatly 
deteriorated because of inaccurate knowledge geometric 
parameters resulting from fabrication and assembly errors. 
Kinematic calibration is therefore required to compute the 
actual values of the geometric parameters and thus enhance 
the accuracy. Without calibration, the significance and 
veridicality of results for experimental robotics cannot be 
gauged. One may expect to spend most of experimental effort 
in calibration and less in actually running the experiments in 
control [1]. 

Kinematic calibration requires redundant sensory 
information. This information can be acquired by using 
external sensors or by adding redundant sensors to the system 
[2-4], or by restraining the motion of the end-effector through 
some locking device [5-8]. The last two are referred to as 
self-calibration or autonomous calibration procedures. In 
another calibration procedures, the end-effector may be 
needed to traverse precise trajectories while measurement data 
is collected [9-12]. 

Classical methods of calibration require measurement of 
complete or partial postures of the end-effector using some 
external measuring devices. Numerous devices have been used 
for calibration of parallel manipulators. Zhuang et al. [3] used 
electronic Theodolites for the calibration of the Stewart 
platform along with standard measuring tapes. For a 3 
degree-of-freedom (DOF) redundant parallel robot. Ota et al 
performed calibration of a parallel machine tool, HexaM, 
using a Double Ball Bar system [13]. Takeda et al. proposed 
use of low order Fourier series to calibrate parallel 
manipulators using Double Ball Bar system [14]. Besnard et al. 
[4] demonstrated that Gough-Stewart platform could be 
calibrated using two inclinometers. All of the kinematic 
parameters can be identified when the Cartesian posture is 
completely measured. However, measuring all components of 
the Cartesian posture, particularly the orientation, can be 

difficult and expensive. With partial pose measurements, 
experimental procedure is simpler but some of the parameters 
may not be identified. 
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Zhuang et al. [3] formulated the cost function in terms of 
the inverse kinematic residuals that results in block diagonal 
identification Jacobian matrix and the identification procedure 
can be implemented without solving forward kinematics. 
Daney et al. [19] presented variable elimination technique to 
improve the effectiveness of identification procedure when 
only partial pose information is available. Khalil et al. [15] 
presented an algorithm to calculate the identifiable parameters 
for robots with tree structures. Based on QR analyses of the 
identification Jacobian matrix, Besnard and Khalil [18] 
analyzed numerical relations between the identifiable and the 
non-identifiable parameters for different calibration schemes 
with case study on the Gough-Stewart platform. 

Effectiveness of the calibration procedure depends greatly 
on the measurements performed. While the Cartesian postures 
are completely measured (3 translations and 3 rotations), the 
results of calibration are uniform over the workspace and all 
of the geometric parameters tend to their actual values. With 
partial pose measurements, however, few geometric 
parameters may not be identifiable and effectiveness of the 
calibration results may vary significantly with in the 
workspace. QR decomposition of the identification Jacobian 
matrix can reveal the non-identifiable parameters. Selecting 
postures for measurement is also an important issue for 
efficient calibration procedure. Typically, the condition 
number of the identification Jacobian is minimized to find 
optimum postures. However, other cost functions that can be 
employed for minimization are summarized by Daney [20]. 

This paper investigates non-identifiable parameters and 
optimum postures for four different calibration procedures of 
parallel manipulators. The study is performed for a 6 
degree-of-freedom (DOF) fully parallel Hexa Slide 
manipulator, HSM. The four calibration procedures are (i) 
Postures measured completely and inverse kinematics 
residuals (ii) Postures measured completely and forward 
kinematics residuals (iii) Only positions measured and (iv) 
Mobility of the end-effector restrained by using a constraint 
link. For optimum postures, the problem was formulated as a 
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constrained optimization problem by specifying limits on the 
search space where the search space is defined in the Cartesian 
coordinates. 

This paper is organized as follows: Hexa Slide Manipulator 
is introduced in Section 2. Section 3 discusses identifiable 
parameters for three different calibration procedures. 
Optimum postures for calibration of HSM are presented in 
section 4. Section 5 concludes the study. 

 

2. DESCRIPTION OF THE MECHANISM 
The Hexa Slide mechanism, HSM, on which the study is 

performed, is a 6-degree-of-freedom fully parallel manipulator 
of PRRS type as shown in figures. Figure 1 shows the 
identification parameters and figure 2 elaborates the base 
frame definition. Ai0 and Ai1, in figure 1, denote the start and 
the end points of the ith (i=1,2,…,6) rail axis. Ai denotes the 
center of ith universal joint and it lies on the line segment 
Ai0Ai1. All of the rail axes are identical and the nominal link 
length  for each leg is equal. The articular variable, A iλ , is 
the distance between the points Ai0 and Ai. The point Bi 
denotes the center of spherical joint at the platform. 

Posture of the mobile platform is represented with a 
position vector of the mobile frame center in the base frame 
and with three Euler angles as 

[ ]X x y z θ ψ φ=   (1) 

The Euler angles are defined as: ψ rotation about the 
global X-axis, θ  rotation about the global Y-axis and φ  
rotation about the rotated local z-axis. Orientation is thus 
given by: , , ,Y X zR R R Rθ ψ φ=  
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Fig. 1 Schematic of HSM 

 
2.1 The Inverse Kinematics 

 
The problem of inverse kinematics is to compute the 

articular variables for a given position and orientation of the 
mobile platform. For the HSM, the problem of inverse 
kinematics is simple and unique and is solved individually for 
each kinematic chain. Considering a single link chain, the 

inverse kinematics relation can be expressed as 

( )22T 2 T
0 0λ = − +a A B - A B a A BA 0  (3) 

where a is the unit vector along the direction of the rails. 
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Fig. 2 Global Reference Coordinate System 

 
2.2 The Forward Kinematics 

 
In forward kinematics, the position and orientation of the 

mobile platform are computed for given values of articular 
variables. Unlike the inverse kinematics, the problem is 
difficult and may yield many solutions. Forward kinematics of 
HSM is solved numerically according to the following 
algorithm [24]: 

• Suppose Xg, an initial posture (6x1 vector) 
• Calculate Qg=IK(Xg) 
• Update posture as: Xg=Xg+Jinv

-1(Qg-Qd) 
• Calculate Qg=IK(Xg) 
• If ||Qd-Qg|| > tolerance, goto step (iii) 
• else Xg is the forward kinematics solution 

where Qd is the vector of measured articular variables, Qg is 
the articular variable vector calculated from IK in step (ii), Jinv 
is the inverse Jacobian and Xg is the solution posture. Note 
that the inverse manipulator Jacobian used in the above 
computations needs to be transformed into the inverse 
Jacobian of Euler angles where the transformation depends on 
the choice of Euler angles used. 
 
2.3 Frames and Identification Parameters 

 
The number of identification parameters depends on the 

way the reference frames are assigned. By assigning the 
reference frames properly, the complexity of the calibration 
problem can be reduced significantly. Fassi et al. studied the 
manipulator under consideration for minimum, complete, and 
parametrically continuos model for kinematic calibration and 
found that 54 parameters are required when measurements are 
performed externally. Number of parameters, however, can be 
reduced by proper frame assignments [4]. 

For this study, origin of the base frame, OXYZ, is located 
at the A10. X-axis of the base frame is defined along the line 
segment A10-A20. Z-axis of the base frame is directed opposite 
to the gravity acceleration and the OXYZ system forms a RHS. 
With this frame assignment, the following 5 parameters will 
be zero and therefore will not be considered as identification 
parameters. 

10 10 10 20 20 0x y z y zA A A A A= = = = =   
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Origin of the mobile frame, P, is located at the center of the 
mobile platform. The PX’Y’Z’ also forms a RHS and is 
parallel to OXYZ when rotation angles are zero. 

Considering a kinematic chain of the HSM, following are 
the identification parameters in general: 

S Joints’ location:  3 parameters/chain B
Slider Axis Start Point:  3 parameters/chain 0A
Slider direction vector: a 2 parameters/chain 
Link Length:  1 parameters/chain A
Note that the unit vectors of the sliders’ are specified by 

two components; say, the x and the y component. This makes 
9 parameters for each link chain and 54 parameters in total for 
the mechanism. Note that all parameters are measured in the 
units of length. Note also that the B points are defined with 
respect to the PX’Y’Z’ frame while the A0 points are defined 
with respect to the OXYZ frame. 

From equation (3), 6 parameters will always be zero. 
Therefore, the total number identification parameters are 
reduced to 49. 

 

3. IDENTIFIABLE PARAMETERS FOR FOUR 
CALIBRATION PROCEDURES 

To perform the calibration procedure, we should solve the 
following linearized equation. 

( , ) ( , )Y X u J X u u∆ = i∆  (4) 

where  is the vector of error residuals,  is the 
vector of Cartesian posture, u is the vector of the identification 
parameters, and 

Y∆ X

J is the Identification Jacobian matrix. 
In general, it is not always possible to calibrate kinematic 

parameters and it is important to study if all of the parameters 
are identifiable with particular calibration procedure. Besnard 
and Khalil [22] proposed use of QR decomposition of the 
identification jacobian matrix to find the non-identifiable 
parameters for different calibration schemes. Below, we 
present briefly the QR decomposition. 

Let m be the number of measurement data and r be the 
number of kinematic calibration parameters. Size of the 
Identification Jacobian matrix will then be m×r, where m>>r. 
QR decomposition of the matrix can be expressed as 
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For the non-identifiable parameters, the corresponding 
diagonal entity of the matrix R is zero. While performing 
numerical computations, the values may be small but still not 
zero. Thus, τ is defined as numerical zero and if 

iir τ≤ , it is 

taken zero. The tolerance is defined as max iirτ ε= × × r , 

where ε  is the machine accuracy [16]. 
 
3.1 Case-I: Complete Posture measurements with Inverse 
kinematics residuals 

Expressing the error residual in terms of the articular 
variables results in block diagonal identification Jacobian 
matrix. Also, the derivatives required for establishing the 
identification Jacobian can be expressed in closed form 

thereby avoiding the numerical inaccuracies. The problem of 
identification, thus, can be solved individually for each 
kinematic chain as 

1 2 1
1 2 1

...i i i i
i j

j j

f f f fu u u
u u u u

λ −
−

∂ ∂ ∂ ∂
ju∆ = ∆ + ∆ + + ∆ + ∆

∂ ∂ ∂ ∂
 (6) 

where j represents the number of identification parameters 
for each kinematic chain. Note that at least j postures are 
required to solve the identification problem in this case. When 
postures are measured completely, 6 values are measured for 
each posture – the three positions and the three rotations. If k 
measurements are performed, then minimum number of 
postures, j, can be expressed as 

 
6j k≥  (7) 

 
Equation 4 can be expressed in detail for this case as 
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Computations show that all of the 49 kinematic parameters 

are identifiable in this case. Further, the condition number of 
its identification jacobian can gauge the effectiveness of any 
calibration procedure. Condition number of the identification 
jacobian is minimum in this case as will be shown later. Also, 
the identification jacobian is homogenous – all entities bear 
the same units. 
 
3.2 Case-II: Complete Posture measurements with 
Forward kinematics residuals 

In this case, the error residual is expressed in terms of the 
components of the Cartesian posture. Thus, for each 
measurement, 3 rows of the identification jacobian are 
computed based on the position components and 3 based on 
the rotations. The matrix, thus, is not homogenous and may 
need scaling. The problem of identification can be expressed 
as 

1 2 1
1 2 1

...i i i i
i j

j j

g g g g
jX u u u

u u u u−
−

∂ ∂ ∂ ∂ u∆ = ∆ + ∆ + + ∆ + ∆
∂ ∂ ∂ ∂

 (9) 

In this case, the identification Jacobian matrix is computed 
numerically through perturbation of the identification 
parameters. Numerical value of perturbation was taken as 10-7. 

Again, in this case, all of the 49 parameters were found 
identifiable. Condition number of the identification Jacobian 
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matrix, however, is higher as compared to the first case. For cases III and IV, additional information is required to 
make possible identification of all of the parameters. Use of 
inclinometers and/or rotary encoder sensors can be studied to 
identify all calibration parameters. 

 
3.3 Case – III: Measuring only the 3 position components 

When only partial pose information is available, we cannot 
use the inverse kinematics residuals and computations are 
based on the forward kinematic model. Equation 9 holds valid 
for this case with the difference that the computed error vector 
consists of only position components. For each measurement, 
only 3 rows of the identification Jacobian are computed 
numerically. 

Table 1 Comparison of Calibration Procedures 
 Case I Case II Case III Case IV 

Identifiable 
Parameters 49 49 48 46 

Condition 
Number 1.4e2 1.5e3 2.4e3 1.4e5 

The number of identifiable parameters was found to be 48 
in this case. This means one of the identification parameters 
cannot be identified. Also, the condition number was found 
much higher than the first two cases. The identification 
Jacobian, however, is homogenous. 

 

4. OPTIMUM POSTURES FOR CALIBRATION 
Measuring postures involve time and may be expensive 

sometimes. Performing measurements at optimum postures 
can assure better performance of calibration procedures. It can 
thus reduce experimental cost and effort. 

 
3.4 Case – IV: Using constraint link Typically, the condition number of the identification 

Jacobian is minimized for searching the optimum postures and 
in this study it is employed as the cost function. However, 
many different criteria have been used for this optimization 
problem, including [20]. 

When constraint link is employed, all of the measured 
postures are equidistant (equal to the length of the constraint 
link) from certain point. This fact is exploited to perform the 
identification. The problem of the identification can thus be 
expressed as 
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• ( )TDet J J  where  represents determinant Det
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L

L

m
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 where m is the number of 

measurement postures, L is the number of 
singular values and σ  represents the singular 
values. 

For each measurement, a single row of the homogenous 
identification Jacobian matrix is computed numerically. 

In this case, we need to define extra parameters, as the 
exact position of the ends of the constraint link may not be 
known precisely. Figure 3 shows the schematic of the 
calibration procedure for the case under consideration. It can 
be seen that parameters for two offsets need to be added. 
Adding 6 more parameters to makes total of 55 identification 
parameters. 

• 
1

Lσ
σ

 - is the inverse of the condition number and 

is maximized for optimization. The maximum 
value of this cost function is 1. 
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In this study, the problem of optimization is formulated as 

constrained minimization where the search is specified in 
Cartesian coordinates and is limited by specifying constraints. 
Note that ideally the search space of the optimum postures 
should be the entire workspace of the manipulator. However, 
boundaries of the actual workspace are mostly complex 
functions of the spatial coordinates and its difficult to model 
them exactly in the Cartesian space. Therefore, a simple 
rectangular region was chosen for search in approximate 
middle of the workspace. If the search space is specified in the 
joint space, more working volume can be exploited. However, 
postures generated within such space may need to be checked 
for being valid. Table 2 shows the values of the specified 
constant constraints. Note that the “fmincon” function of the 
MATLAB optimization toolbox was used to solve the problem 
with condition number of the identification Jacobian taken as 
the cost function. 

Constraint Link

 
Fig. 3 Schematic diagram of calibration method using a 

constraint link 
QR decomposition reveals that the number of identifiable 

parameters is 46, thus making 9 parameters non-identifiable. 
Condition number of the identification Jacobian is highest of 
all the cases. 
 
3.5 Comparison of the Calibration procedures 

Table 1 summarizes the results for the calibration 
procedures. If the postures are measured completely, all of the 
parameters can be identified. Also, the inverse kinematics 
residuals give better results due to lower value of the condition 
number. With only position measurements, all parameters 
cannot be identified. Note that the error residual may still 
reduce significantly. The calibrated parameters, however, may 
give varying accuracy in different region of the workspace. 
The case of the constraint link shows as many as 9 
non-identifiable parameters and does not seem a practical 
solution to calibration. 

 
Table 2 Search space for optimum postures 

X(m) Y(m) Z(m) ψ (o) θ (o) φ (o) 

-0.3 - 0.3 -1.1 - -0.5 -1.3 - -1.0 ± 15 ± 15 ± 30 

 
4.1 Case I 

Starting with randomly generated postures, the optimum 
postures were found after few iterations of the optimization 
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function. Table 3 shows the values of the condition number 
before and after the minimization. 

Table 5 Comparison of Condition number (Case III) 
Number of data Condition number 

16 postures - Random 3.3916e+4 
16 postures - Optimum 2430.2 

 
Table 3 Comparison of Condition number (Case I) 
Number of Postures Condition number 
9 postures - Random 2.888e+3 
9 postures - Optimum 140.2 

 
Table 6 Comparison of Condition number (Case IV) 

Number of data Condition number 
46 postures - Random 6.0120e+5 
46 postures - Optimum 1.4523e+5 

 
Figure 4 shows the orientation of postures with in the 

search space before and after the optimization. It can easily be 
observed that the trend of postures is to orient themselves near 
the boundaries of the workspace. 

 
Note that the reduction of the cost function, condition 

number of the identification Jacobian, is much less for case III 
and case IV as compared to case I and case II. Generally, the 
higher the condition number, the less reliable will be the 
calibration results. High values of condition number stress the 
need of augmenting more information for Cases III and IV. 
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5. CONCLUSIONS 
Computer simulations results show that for case I and 

case II, all of the 49 geometric parameters 49 are identifiable. 
For case III, only 48 geometric parameters can be identified. 
For case IV, the number of identifiable parameters is just 46 
out of the total 55 parameters in this case. 

Optimization for the measurement postures results in 
significant reduction of the condition number for case I and 
case II. For case III and case IV the reduction is not very 
significant. A same trend was observed during optimization 
for all of the cases – the measurement postures move towards 
the boundary of the search space. (a) Postures before optimization 

The last two cases require more information for effective 
calibration and some other sensors should be used to augment 
the measurement information. 
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