• 제목/요약/키워드: Kinematic control

Search Result 646, Processing Time 0.02 seconds

Constraint Operator for the Kinematic Calibration of a Parallel Mechanism

  • Lee, Min-Ki;Kim, Tae-Sung;Park, Kun-Woo;Kwon, Sung-Ha
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.23-31
    • /
    • 2003
  • This paper introduces a constraint operator for the kinematic calibration of a parallel mechanism. By adopting the concept of a constraint operator, the movement between two poses is constrained. When the constrained movements are satisfied, the active joint displacements are taken and inputted into the kinematic model to compute the theoretical movements. A cost function is derived by the errors between the theoretical movement and the actual movement. The parameters that minimize the cost function are estimated and substituted into the kinematic model for a kinematic calibration. A single constraint plane is employed as a mechanical fixture to constrain the movement, and three digital indicators are used as the sensing devices to determine whether the constrained movement is satisfied. This calibration system represents an effective, low cost and feasible technique for a parallel mechanism. A calibration algorithm is developed with a constraint operator and implemented on a parallel manipulator constructed for a machining center tool.

Analysis on Kinematic Characteristics of the Revolute-joint-based Translational 3-DOF Parallel Mechanisms (회전관절만을 활용하는 병진 3자유도 병렬 메커니즘의 기구학 특성 분석)

  • Park, Jae-Hyun;Kim, Sung Mok;Kim, WheeKuk
    • The Journal of Korea Robotics Society
    • /
    • v.10 no.2
    • /
    • pp.119-132
    • /
    • 2015
  • Two novel parallel mechanisms (PMs) employing two or three PaPaRR subchains are suggested. Each of those two PMs has translational 3-DOF motion and employs only revolute joints such that they could be adequate for haptic devices requiring minimal frictions. The position analyses of those two PMs are conducted. The mobility analysis, the kinematic modeling, and singularity analysis of each of two PMs are performed employing the screw theory. Then through optimal kinematic design, each of two PMs has excellent kinematic characteristics as well as useful workspace size adequate for haptic applications. In particular, by applying an additional redundantly actuated joint to the 2-PaPaRR type PM which has a closed-form position solution, it is shown that all of its parallel singularities within reachable workspace are completely removed and that its kinematic characteristics are improved.

Analaysis and design of redundant parallel manipulators (여유 자유도 병렬형 로봇의 분석 및 설계)

  • Kim, Sung-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.5
    • /
    • pp.482-489
    • /
    • 1997
  • This paper presents the analysis of the kinematics and dynamics of redundant parallel manipulators, and provides design guides for advanced parallel mainpulators with high performance. Three types of redundancies are considered which include the redundancies in serial chain, joint actuation, and parallelism. First, the kinematic and dynamic models of a redundant parallel manipulator are obtained in both joint and Cartesian spaces, and the kinematic and dynamic manipulabilities are defined for the performance evaluation. The effects of the three types of redundancies on the kinematic and dynamic performance of a parallel manipulator are then analyzed and compared, providing a set of guides for the design of advanced parallel manipulators. Finally, the simulation results using planer parallel manipulators are given.

  • PDF

Inverse Kinematic and Dynamic Analyses of 6-DOF PUS Type parallel Manipulators

  • Kim, Jong-Phil;Jeha Ryu
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.13-23
    • /
    • 2002
  • This paper presents inverse kinematic and dynamic analyses of HexaSlide type six degree-of-freedom parallel manipulators. The HexaSlide type parallel manipulators (HSM) can be characterized as an architecture with constant link lengths that are attached to moving sliders on the ground and to a mobile platform. In the inverse kinematic analyses, the slider and link motion (position, velocity, and acceleration) is computed given the desired mobile platform motion. Based on the inverse kinematic analysis, in order to compute the required actuator forces given the desired platform motion, inverse dynamic equations of motion of a parallel manipulator is derived by the Newton-Euler approach. In this derivation, the joint friction as well as all link inertia are included. Relative importance of the link inertia and joint frictions on the computed torque is investigated by computer simulations. It is expected that the inverse kinematic and dynamic equations can be used in the computed torque control and model-based adaptive control strategies.

Kinematic Analysis of Multi Axis Shaking Table for Multi-Purpose Test of Heavy Transport Vehicle (고하중 차량의 다목적 테스트를 위한 다축 가진 테이블의 기구학 해석)

  • Jin, Jae-Hyun;Na, Hong-Cheoul;Jeon, Seung-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.9
    • /
    • pp.823-829
    • /
    • 2012
  • An excitation table is commonly used for vibration and ride tests for parts or assemblies of automobiles, aircrafts, or other heavy systems. The authors have analyzed several kinematic properties of an excitation table that is under development for heavy transport vehicles. It consists of one table and 7 linear hydraulic actuators. The authors have performed mobility analysis, inverse kinematics, forward kinematics, and singularity analysis. Especially, we have proposed a fast forward kinematic solution considering the limited motion of the excitation table. On the assumption that the motion variables such as rotation angles and displacements are small, the forward kinematic problem is converted to the observer problem of a linear system. This provides a fast solution. Also we have verified that there are no singularity points in the working range by numerical analysis.

Resolution of kinematic redundancy using contrained optimization techniques under kinematic inequality contraints

  • Park, Ki-Cheol;Chang, Pyung-Hun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.69-72
    • /
    • 1996
  • This paper considers a global resolution of kinematic redundancy under inequality constraints as a constrained optimal control. In this formulation, joint limits and obstacles are regarded as state variable inequality constraints, and joint velocity limits as control variable inequality constraints. Necessary and sufficient conditions are derived by using Pontryagin's minimum principle and penalty function method. These conditions leads to a two-point boundary-value problem (TPBVP) with natural, periodic and inequality boundary conditions. In order to solve the TPBVP and to find a global minimum, a numerical algorithm, named two-stage algorithm, is presented. Given initial joint pose, the first stage finds the optimal joint trajectory and its corresponding minimum performance cost. The second stage searches for the optimal initial joint pose with globally minimum cost in the self-motion manifold. The effectiveness of the proposed algorithm is demonstrated through a simulation with a 3-dof planar redundant manipulator.

  • PDF

Study on Kinematic Calibration Method of Stewart Platforms (스튜어트 플랫폼의 기구학적 교정기법에 관한 연구)

  • Goo, Sang-Hwa;Son, Kwon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.2
    • /
    • pp.168-172
    • /
    • 2001
  • The accuracy problem of robot manipulators has long been one of the principal concerns in robot design and control. A practical and economical way of enhancing the manipulator accuracy, without affecting its hardware, is kinematic calibration. In this paper an effective and practical method is presented for kinematic calibration of Stewart platforms. In our method differential errors in kinematical parameters are linearly related to differential errors in the platform pose, expressed through the forward kinematics. The algorithm is tested using simulated measurement in which measurement noise is included.

  • PDF

A Path Tracking Control Algorithm for Autonomous Vehicles (자율 주행차량의 경로추종 제어 알고리즘)

  • 안정우;박동진;권태종;한창수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.4
    • /
    • pp.121-128
    • /
    • 2000
  • In this paper, the control algorithm fur an autonomous vehicle is studied and applied to an actual 2 wheel-driven vehicle system. In order to control a nonholonomic system, the kinematic model for an autonomous vehicle is constructed by relative velocity relationship about the virtual point at distance from the vehicle's frame. And the optimal controller that based on the kinematic model is operated on purpose to track a reference vehicle's path. The actual system is designed with named 'HYAVI' and the system controller is applied. Because all the results of simulation don't satisfy the driving conditions of HYAVI, a reformed control algorithm that satisfies an actual autonomous vehicle is applied at HYAVI. At the results of actual experiments, the path tracking works very well by the reformed control algorithm. An autonomous vehicle that applied this control algorithm can be easily used for a path generation algorithm.

  • PDF

A Study on Kinematic Analysis of Feeding Control Mechanism of a Lock Stitch Sewing Machine (본봉용 재봉기의 이송조절기구의 기구 해석에 관한 연구)

  • 신대영;전경진;송창섭
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.12
    • /
    • pp.48-54
    • /
    • 1998
  • In sewing, fabrics is fed by an elliptic motion of the feed dog. The feeding control mechanism controls an elliptic motion of the feed dog, finally, controls stitch spacings and feeding directions of fabrics. This study discusses the feeding control mechanism of an industrial lock stitch sewing machine, which is a good example to study a machine kinematics. This study makes mathematical expressions of machine's motion in the feeding control mechanism. Thus, the motions of this mechanism are characterized, which will be used for kinematic analysis of the feed dog later. Also, the above mathematical expressions may be a basis for the new design of the feeding control mechanism and may be applied to development of the similar feeding control mechanism of other type sewing machine.

  • PDF

Hybrid control of a tricycle wheeled AGV for path following using advanced fuzzy-PID

  • Bui, Thanh-Luan;Doan, Phuc-Thinh;Van, Duong-Tu;Kim, Hak-Kyeong;Kim, Sang-Bong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1287-1296
    • /
    • 2014
  • This paper is about control of Automated Guided Vehicle for path following using fuzzy logic controller. The Automated Guided Vehicle is a tricycle wheeled mobile robot with three wheels, two fixed passive wheels and one steering driving wheel. First, kinematic and dynamic modeling for Automated Guided Vehicle is presented. Second, a controller that integrates two control loops, kinematic control loop and dynamic control loop, is designed for Automated Guided Vehicle to follow an unknown path. The kinematic control loop based on Fuzzy logic framework and the dynamic control loop based on two PID controllers are proposed. Simulation and experimental results are presented to show the effectiveness of the proposed controllers.