• Title/Summary/Keyword: Kinematic and compliance analysis

Search Result 17, Processing Time 0.03 seconds

Kinematic Optimum Design of a Torsion-Beam Suspension Using Genetic Algorithms (유전 알고리듬을 이용한 토션빔 현가장치의 기구학적 최적설계)

  • Ok, Jin-Kyu;Baek, Woon-Kyung;Sohn, Jeong-Hyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.1
    • /
    • pp.25-30
    • /
    • 2006
  • This study is about an optimum design to improve the kinematic and compliance characteristics of a torsion-beam suspension system. The kinematic and compliance characteristics of an initial design of the suspension was obtained through a roll-mode analysis. The objective function was set to minimize within design constraints. The coordinates of the connecting point between the torsion-beam and the trailing arm were treated as design parameters. Since the torsion-beam suspension has large nonlinear effects due to kinematic and elastic motion, Genetic Algorithms were employed for the optimal design. The optimized results were verified through a double-lane change simulation using the full vehicle model.

Kinematic Analysis of the Characteristics of Translational XYZ Micro Parallel Manipulator (병진운동을 하는 XYZ 마이크로 병렬형 머니퓰레이터의 기구학적 특성 분석)

  • Kim, Eun-Seok;Yang, Hyun-Ik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.4
    • /
    • pp.441-450
    • /
    • 2007
  • In this study, a 3-DOF XYZ micro parallel manipulator utilizing compliance mechanism is developed and analyzed. In so doing, a matrix method is used to rapidly solve displacements of the designed kinematic structure, and then kinematic characteristics of the developed manipulator are analyzed. Finally, the design analysis of the kinematic characteristics by changing hinge thickness and structure to improve workspace and translation motion is performed to show that the performance of the developed manipulator is relatively superior to the other similar kind of manipulators.

A Study on the Effects of the Flexibilities of Suspension System of a Vehicle for Handling Performance (자동차 현가장치의 강성이 조종안정성에 미치는 영향에 관한 연구)

  • 송성재;문홍기;조병관
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.4
    • /
    • pp.186-197
    • /
    • 1998
  • An analysis of handling performance including the compliance effects is performed. Using the primitive design data of suspension systems, a kinematic model and the three kinds of compliance models are developed. The wheel alignments curves are obtained with the multibody dynamic analysis program ADAMS. The compliance effects of each model are discussed. Since the proposed analysis only requires the raw design data, the better prediction of wheel behaviors is possible in suspension design stage.

  • PDF

RELIABILITY-BASED DESIGN OPTIMIZATION OF AN AUTOMOTIVE SUSPENSION SYSTEM FOR ENHANCING KINEMATIC AND COMPLIANCE CHARACTERISTICS

  • CHOI B.-L.;CHOI J.-H.;CHOI D.-H.
    • International Journal of Automotive Technology
    • /
    • v.6 no.3
    • /
    • pp.235-242
    • /
    • 2005
  • This study introduces the Reliability-Based Design Optimization (RBDO) to enhance the kinematic and compliance (K & C) characteristics of automotive suspension system. In previous studies, the deterministic optimization has been performed to enhance the K & C characteristics. Unfortunately, uncertainties in the real world have not been considered in the deterministic optimization. In the design of suspension system, design variables with the uncertainties, such as the bushing stiffness, have a great influence on the variation of the suspension performances. There is a need to quantify these uncertainties and to apply the RBDO to obtain the design, satisfying the target reliability level. In this research, design variables including uncertainties are dealt as random variables and reliability of the suspension performances, which are related the K & C characteristics, are quantified and the RBDO is performed. The RBD-optimum is compared with the deterministic optimum to verify the enhancement in reliability. Thus, the reliability of the suspension performances is estimated and the RBD-optimum, satisfying the target reliability level, is determined.

Analysis on characteristics of antagonistic stiffness of the planar 3 degrees-of-freedom RCC mechanism (평면형 3 자유도 RCC 메카니즘의 상반효과로 인한 강성 특성 분석)

  • 이병주;김희국;이준용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.718-721
    • /
    • 1996
  • In this work, an effective stiffness generated by internal loading for a planar 3 degrees of freedom RCC mechanism is investigated. For this purpose, the internal kinematic analysis and antagonistic stiffness modeling for this mechanism are performed. It is shown that the antagonistic stiffness could be effectively created at the center of the mechanism in its symmetric configuration.

  • PDF

Output Compliance Effects By Both Redundant Joint Compliances and Antagonistic Torques of A Spherical 3-DOF Mechanism (구형 3 자유도 메카니즘의 잉여관절 콤플라이언스와 상반토크로 인한 출력 콤플라이언스 효과)

  • 이준용;김희국
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.793-798
    • /
    • 1996
  • In this paper, output compliance effects at RCC point by both redundant joint compliances and antagonistic torques generated by internal preloading between joints of a spherical 3 degree-of-freedom mechanism are investigated. For this purpose, kinematic analysis is briefly described. Then, output compliance models at RCC point, which is generated by redundant joint compliances and by internal preloading between joints are derived. Finally, ranges of output compliance modulation due to these redundant joint compliances and antagonistic torques are examined through simulation.

  • PDF

Vehicle Dynamics Modeling and Correlation Using the Kinematic and Compliance Test of the Suspension (현가장치 기구정역학 시험에 의한 차량동역학 모델링 및 시험검증)

  • Kim Sangsup;Jung Hongkyu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.109-118
    • /
    • 2005
  • A functional suspension model is proposed as a kinematic describing function of the suspension that represents the relative wheel displacement in polynomial form in terms of the vertical displacement of the wheel center and steering rack displacement. The relative velocity and acceleration of the wheel is represented in terms of first and second derivatives of the kinematic describing function. The system equations of motion for the full vehicle dynamic model are systematically derived by using velocity transformation method of multi-body dynamics. The comparison of field test results and simulation results of the ADAMS/Car demonstrates the validity of the proposed functional suspension modeling method. This model is suitable for real-time vehicle dynamics analysis.

Design Optimization of Over-slam Bumper for Moving Part Over-travel (무빙부품의 과다 닫힘 방지를 위한 오버슬램 범퍼 최적설계)

  • Choi, Yeonwook;Ki, Wonyong;Lee, Jonghyun;Heo, Seung-Jin;Rhie, Chulhong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.5
    • /
    • pp.66-72
    • /
    • 2014
  • A kinematic analysis method has been used as analysis method for dynamic behavior of moving parts of vehicle, especially hood part. Such analysis method, however, has its limitations in terms of design technology, including, over travel of hood that occurs due to lack of considerations of compliance characteristics, such as flexible components of hood's weather strip and over slam bumper. Therefore, it is necessary to develop a modeling which reflects compliance of flexible components of hood and elastic characteristics of panel for improvement of design process. In this thesis, a finite element method as mentioned earlier, is developed to represent over travel of hood. Also optimization process applying sequential approximate optimization is suggested to prevent over travel. The over travel analysis method and optimization process, which are developed through the research, would make it possible to design with high quality and credibility. Furthermore, it is expected that the time for design would be reduced and the design quality also improved.

Steering System Design of Commercial Vehicle for Improving Pulling Phenomenon During Braking (상용차의 제동시 쏠림 개선을 위한 조향 연결점 설계)

  • Lee, Chang Hun;Lee, Dong Wook;Lee, Yong Su;Sohn, Jeong Hyun;Kim, Kwang Suk;Yoo, Wan Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.3
    • /
    • pp.379-385
    • /
    • 2013
  • The tires, suspension type, and steering system can all cause pulling during braking. Among these, a drag link steering system and leaf-type suspension system are significant causes of vehicle pulling. In this study, the pulling problem is analyzed using the vehicle analysis program "ADAMS/CAR." The drag link and leaf spring behavior is analyzed to find the key reason for pulling. After this, the optimization program "Visual DOC" is used with "ADAMS/CAR" to find a steering link connection point to reduce pulling. After conducting this simulation, K&C (kinematic & compliance) test simulation with a modified connection point is conducted to determine whether the vehicle performance improves. Through a full braking simulation, it is verified that the pulling distance is reduced at braking.

RELIABILITY-BASED DESIGN OPTIMIZATION OF AUTOMOTIVE SUSPENSION SYSTEMS

  • Chun, H.H.;Kwon, S.J.;Tak, T.
    • International Journal of Automotive Technology
    • /
    • v.8 no.6
    • /
    • pp.713-722
    • /
    • 2007
  • Design variables for suspension systems cannot always be realized in the actual suspension systems due to tolerances in manufacturing and assembly processes. In order to deal with these tolerances, design variables associated with kinematic configuration and compliance characteristics of suspensions are treated as random variables. The reliability of a design target with respect to a design variable is defined as the probability that the design target is in the acceptable design range for all possible values of the design variable. To compute reliability, the limit state, which is the boundary between the acceptable and unacceptable design, is expressed mathematically by a limit state function with value greater than 0 for acceptable design, and less than 0 for unacceptable design. Through reliability analysis, the acceptable range of design variables that satisfy a reliability target is specified. Furthermore, through sensitivity analysis, a general procedure for optimization of the design target with respect to the design variables has been established.