• Title/Summary/Keyword: Kinematic Systems

Search Result 523, Processing Time 0.031 seconds

Kinematic jacobian uncertainty compensation using neural network (신경회로망을 이용한 기구학적 자코비안의 불확실성 보상 알고리즘)

  • Jung, Seul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1820-1823
    • /
    • 1997
  • For the Cartesian space position controlled robot, it is required to have the accurate mapping from the Cartesian space to the joint space in order to command the desired joint trajectories correctly. since the actual mapping from Cartesian space to joint space is obtained at the joint coordinate not at the actuator coordinate, uncertainty in Jacobian can be present. In this paper, two feasible neural network schemes are proposed to compensate for the kinematic Jacobian uncertainties. Uncertainties in Jacobian can be compensated by identifying either actuator Jacobian off-line or the inverse of that in on-line fashion. the case study of the stenciling robot is examined.

  • PDF

A Krein Space Approach for Robust Extended Kalman Filtering on Mobile Robots in the Presence of Uncertainties

  • Jin, Seung-Hee;Park, Jin-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1771-1776
    • /
    • 2003
  • In mobile robot navigation, one of the key problems is the pose estimation of the mobile robot. Although the odometry can be used to describe the motions of the mobile robots quite simple and accurately, the validities of the models are limited by a number of error sources contaminating the encoder outputs so that applying the conventional extended Kalman filter to these nominal model does not yield the satisfactory performance. As a remedy for this problem, we consider the uncertain nonlinear kinematic model of the mobile robot that contains the norm bounded uncertainties and also propose a new robust extended Kalman filter based on the Krein space approach. The proposed robust filter has the same recursive structure as the conventional extended Kalman filter and can hence be readily designed to effectively account for the uncertainties. The computer simulations will be given to verify the robustness against the parameter variation as well as the reliable performance of the proposed robust filter.

  • PDF

Adaptive Control for Tracking Trajectory of a Two-Wheeled Welding Mobile Robot with Unknown Parameters

  • Bui, Trong Hieu;Chung, Tan-Lam;Suh, Jin-Ho;Kim, Sang-Bong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.191-196
    • /
    • 2003
  • This paper presents a method to design an adaptive controller for the kinematic model of a two-wheeled welding mobile robot (WMR) with unknown parameters. We propose a nonlinear controller based on the Lyapunov function to enhance the tracking properties of the WMR. The WMR can track any smooth curved welding path at a constant velocity of the welding point. The system has three degrees of freedom including two wheels and one torch slider. Torch slider motion is used for fast tracking. To design the tracking performance, the errors from WMR to steel wall is defined, and the controller is designed to drive the errors to zero as fast as possible. The effectiveness of the proposed controller is shown through simulation results.

  • PDF

Approximate Synthesis of 5-SS Multi Link Suspension Systems for Steering Motion (조향 운동을 고려한 5-SS 멀티링크 현가장치의 근사 합성)

  • Kim, Seon-Pyeong;Sim, Jae-Gyeong;An, Byeong-Ui;Lee, Eon-Gu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.1
    • /
    • pp.32-38
    • /
    • 2001
  • This paper presents an approximate synthesis of 5-SS multi link suspension for 2 D.O.F motions. In the proposed synthesis method, alteration curves of camber, toe, kingpin and caster angles are optimized during the bump rebound and the steering motions. And joint positions can be located within desired boundari es. Especially, steering motions are considered for control of kingpin offset and caster trail. Prescribed motions contain both wheel center positions and imaginary kingpin axes in the multi link type suspension. Constraint equations are formulated with di splacement matrix and velocity matrix using instantaneous screw axis.

ELASTOKINEMATIC ANALYSIS OF A SUSPENSION SYSTEM WITH LINEAR RECURSIVE FORMULA

  • KANG J. S.
    • International Journal of Automotive Technology
    • /
    • v.6 no.4
    • /
    • pp.375-381
    • /
    • 2005
  • This paper presents linear algebraic equations in the form of recursive formula to compute elastokinematic characteristics of a suspension system. Conventional methods of elastokinematic analysis are based on nonlinear kinematic constrant equations and force equilibrium equations for constrained mechanical systems, which require complicated and time-consuming implicit computing methods to obtain the solution. The proposed linearized elastokinematic equations in the form of recursive formula are derived based on the assumption that the displacements of elastokinematic behavior of a constrained mechanical system under external forces are very small. The equations can be easily computerized in codes, and have the advantage of sharing the input data of existing general multi body dynamic analysis codes. The equations can be applied to any form of suspension once the type of kinematic joints and elastic components are identified. The validity of the method has been proved through the comparison of the results from established elastokinematic analysis software. Error estimation and analysis due to piecewise linear assumption are also discussed.

Development of the Revised Self-Organizing Neural Network for Robot Manipulator Control (로봇 메니퓰레이터 제어를 위한 개조된 자기조직화 신경망 개발)

  • Koo, Tae-Hoon;Rhee, Jong-Tae
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.25 no.3
    • /
    • pp.382-392
    • /
    • 1999
  • Industrial robots have increased in both the number and applications in today's material handling systems. However, traditional approaches to robot controling have had limited success in complicated environment, especially for real time applications. One of the main reasons for this is that most traditional methods use a set of kinematic equations to figure out the physical environment of the robot. In this paper, a neural network model to solve robot manipulator's inverse kinematics problem is suggested. It is composed of two Self-Organizing Feature Maps by which the workspace of robot environment and the joint space of robot manipulator is inter-linked to enable the learning of the inverse kinematic relationship between workspace and joint space. The proposed model has been simulated with two robot manipulators, one, consisting of 2 links in 2-dimensional workspace and the other, consisting of 3 links in 2-dimensional workspace, and the performance has been tested by accuracy of the manipulator's positioning and the response time.

  • PDF

The investigation of postural balance recovery mechanism of high-heeled women using COP's kinematic characteristics during the waist pulling (전방향 동요 시 압력중심의 기구학적 특성을 통한 하이힐 착용 여성의 자세균형회복 메커니즘에 관한 고찰)

  • 조원학;서민좌;최현기
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1211-1214
    • /
    • 2004
  • High-heeled women have been identified with balance control problems. The purposes of this study were to objectively quantify the displacements and velocities of center-of-pressure (COP) of body during waist pulling and to compare the differences between barefooted and high-heeled situations. We used a waist pulling system which has three different magnitudes to sway the subjects. We found that the kinematic information of barefooted and high-heeled women's COP is very important in understanding the mechanism of postural balance control of women in every-day life. In the high-heeled's case, the displacement of COP increases in 200% as against bare footed. Also the velocity variation of COP grows three times than the bare footed. COP analysis in postural balance study of high-heeled women is also considered useful in development of the safety systems that prevent high-heeled women from falling

  • PDF

Development of a Washout Algorithm Using the Signal Compression Method

  • Kang, Eu-Gene;You, Ki-Sung;Lee, Min-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.101.1-101
    • /
    • 2002
  • Vehicle driving simulator is a virtual reality device which makes a human being feel as if the one drives a vehicle actually. Unlike actual vehicle, the simulator has limited kinematic workspace and bounded dynamic characteristics. So it is difficult to simulate dynamic motions of a multi-body vehicle model fully. In order to overcome these problems, washout algorithm which restricts workspace of the simulator within the kinematic limits is needed, and analysis of dynamic characteristics is required also. However, it is difficult to select the proper cutoff frequency of filters in washout algorithm. This paper introduces the signal compression method as an effective method to analyze the sim...

  • PDF

Tracking a constant speed maneuvering target using IMM method

  • Lee, Jong-hyuk;Kim, Kyung-youn;Ko, Han-seok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.484-487
    • /
    • 1995
  • An interacting multiple model (IMM) approach which merges two hypotheses for the situations of constant speed and constant acceleration model is considered for the tracking of maneuvering target. The inflexibility of uncertainty which lies in the kinematic constraint (KC) represented by pseudomeasurement noise variance is compensated by the mixing of estimates from two model Kalman tracker: one with KC and one without KC. The numerically simulated tracking performance is compared for the "great circular like turning" trajectory maneuver by the single model tracker with constant speed KC and two model tracker which is developed in this paper.his paper.

  • PDF

Control input reconstruction using redundancy under torque limit

  • Park, Jonghoon;Chung, Wan-Kyun;Youm, Youngil
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.452-455
    • /
    • 1995
  • Various physical limitations which intrinsically exist in the manipulator control system, for example kinematic limits and torque limit, cause some undesirable effects. Specifically, when one or more actuators are saturated the expected control performance can not be anticipated and in some cases it induces instability of the system. The effect of torque limit, especially for redundant manipulators, is studied in this article, and an analytic method to reconstruct the control input using the redundancy is proposed based on the kinematically decomposed modeling of redundant manipulators. It results to no degradation of the output motion closed-loop dynamics at the cost of the least degradation of the null motion closed-loop dynamics. Numerical simulations help to verify the advantages of the proposed scheme.

  • PDF