• Title/Summary/Keyword: Kinematic Characteristics

Search Result 497, Processing Time 0.04 seconds

Stress-Strain Characteristics of Weathered Granite Soil in Plane Strain Test (평면변형시험을 이용한 화강풍화토의 응력-변형률 특성)

  • Kim, You-Seong;Lee, Jin-Kwang;Kim, Jae-Hong
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.5
    • /
    • pp.37-46
    • /
    • 2014
  • Geotechnical structures have been analyzed and constructed in various geometry conditions to maintain their stability in accordance with the characteristics of construction design. Shear strengths are generally obtained from triaxial test to apply to design analysis. Geotechnical structures under strip loading, such as earth dam, embankment, and retaining wall, have the strain in a direction, and plane strain condition. Thus, an approximate shear strengths should be applied for stability analysis suitable to ground condition. When applying shear strengths obtained from triaxial tests for slope stability analysis, the evaluation of it may underestimate the factor of safety because the implementation is not suitable for geometry condition. The paper compares shear strengths obtained from triaxial test and plane strain test based on various relative densities using weathered granite soils. Additionally, yield stress is determined by maximum axial strain 15% in triaxial test because of continuous kinematic hardening, but plane strain test can determine a failure point in critical state to evaluate the shear strengths of soils at the second plastic hardening step. This study proposes to perform an appropriate test for many geotechnical problems with plane strain condition.

The study on performance of characteristics in engine oil by vehicle driving (차량 운행에 따른 엔진오일의 성능특성 평가 연구)

  • Lee, Joung-Min;Lim, Young-Kwan;Jung, Choong-Sub;Kim, Ye-Eun;Han, Kwan-Wook;Na, Byung-Ki
    • Journal of Energy Engineering
    • /
    • v.22 no.2
    • /
    • pp.237-244
    • /
    • 2013
  • The engine oil is used for lubrication of various internal combustion engines. Recently, the vehicle and engine oil manufacture usually guarantee for oil change over 15000~20000 km mileage, but the most of driver usually change engine oil every 5000 km driving in korea. It can cause to raise environmental contamination by used engine oil and increase the cost of driving by frequently oil change. In this study, we investigate the various physical properties such as flash point, pour point, kinematic viscosity, cold cranking simulator characteristics, total acid number, four-ball test and concentration of metal component for fresh engine oil and used engine oil after real vehicle driving (5000 km, 10000 km). The result showed that the total acid number, wear scar diameter by four-ball test, Fe and Cu had increased than fresh engine oil, but 2 kind of used oil (5000 km and 10000km) had similar physical values and concentration of metal component.

Electromyographic Analysis of a Uphill Propulsion of a Bicycle by Forward.Backward Pedaling (정.역구동 페달링에 따른 자전거 등판 시의 근전도 분석)

  • Shin, Eung-Soo;Kim, Hyun-Joong
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.4
    • /
    • pp.171-177
    • /
    • 2008
  • This work intends to investigate the effects of pedaling directions on the muscle actions during the bicycle's uphill propulsion. A test rig was developed that consists of a bicyle with a special planetary geartrain, a height-adjustable treadmill, a rear-wheel support and a magnetic brake. A three-dimensional motion analysis was performed for measuring kinematic characteristics of the forward backward pedaling and the electromygraphy(EMG) measurements were simultaneously performed for estimating the muscle actions of the leg. In this work, four muscles are considered including Gastrocnemius muscle(GM), Vastus lateralis(VL), Tibialis anterior(TA) and Soleus(SOL) while the uphill slope is varied from $0^{\circ}$ to $6^{\circ}$. Raw EMG signals were first processed through the root-mean-square(RMS) averaging and then ensemble curves were derived by averaging the EMG RMS envelopes over 50 consecutive cycles. Results show that both the kinemactic characteristics and the muscle actions are significantly affected by the pedaling direction. The crank speed of the forward pedaling is higher but the difference in speed is reduced as the slope is increased. The ensemble curves of the :ac signals clearly exhibit some differences in their patterns, peak values and the corresponding locations with respect to the crank angle. The peak values of most EMG signals are higher for the forward pedaling regardless of the slope magnitude. However, the averages of the EMG signals are not observed to have a similar relationship with the pedaling direction, which seems to be affected by several factors such as less experience of the participants' backward pedaling. inappropriate bicycle design for the backward pedaling. These limitations will be further considered in future work.

A Study on the Design Criteria of Pedestrian Facility (Stairs) by Motion Analysis of Walking Parameters in the Elderly (고령자 보행변수 실측을 통한 보행시설물 설계기준 정립 1: 고령자 보행특성을 고려한 계단 챌면 높이 연구)

  • ROH, Chang-Gyun;PARK, Bum Jin
    • Journal of Korean Society of Transportation
    • /
    • v.35 no.5
    • /
    • pp.396-408
    • /
    • 2017
  • In Korea, the number of elderly has been increasing rapidly. So it is also expected that the economic activity and the trip frequency of the elderly will increase. On the other hand, elderly related accidents such as falls during walking are steadily increasing and the satisfaction about pedestrian environment of elderly is very low. In this paper, we found one of the reasons for these dissatisfaction in pedestrian facility, which is not considering the walking ability (about 75% of non-elderly person) of the elderly. So, we analyze the kinematic walking characteristics of the elderly with the motion analysis system, when the elderly use stairs. As a result of analysis of various walking variables, the current standard for stairway height in Korean law (18cm) requires excessive force to elderly so it was difficult for elderly to keep the balance of the body in ascending and descending walk of stairs. In this paper, we propose the stair design criteria through the cluster analysis of walking parameters reflecting the gait characteristics of the elderly. This change is not a big for non-elderly person, but it can promote more socioeconomic activities for the elderly.

Impact of the lateral mean recirculation characteristics on the near-wake and bulk quantities of the BARC configuration

  • Lunghi, Gianmarco;Pasqualetto, Elena;Rocchio, Benedetto;Mariotti, Alessandro;Salvetti, Maria Vittoria
    • Wind and Structures
    • /
    • v.34 no.1
    • /
    • pp.115-125
    • /
    • 2022
  • The high-Reynolds number flow around a rectangular cylinder, having streamwise to crossflow length ratio equal to 5 is analyzed in the present paper. The flow is characterized by shear-layer separation from the upstream edges. Vortical structures of different size form from the roll-up of these shear layers, move downstream and interact with the classical vortex shedding further downstream in the wake. The corresponding mean flow is characterized by a recirculation region along the lateral surface of the cylinder, ending by mean flow reattachment close to the trailing edge. The mean flow features on the cylinder side have been shown to be highly sensitive to set-up parameters both in numerical simulations and in experiments. The results of 21 Large Eddy Simulations (LES) are analyzed herein to highlight the impact of the lateral mean recirculation characteristics on the near-wake flow features and on some bulk quantities. The considered simulations have been carried out at Reynolds number Re=DU_∞/ν=40 000, being D the crossflow dimension, U_∞ the freestream velocity and ν the kinematic viscosity of air; the flow is set to have zero angle of attack. Some simulations are carried out with sharp edges (Mariotti et al. 2017), others with different values of the rounding of the upstream edges (Rocchio et al. 2020) and an additional LES is carried out to match the value of the roundness of the upstream edges in the experiments in Pasqualetto et al. (2022). The dimensions of the mean recirculation zone vary considerably in these simulations, allowing us to single out meaningful trends. The streamwise length of the lateral mean recirculation and the streamwise distance from the upstream edge of its center are the parameters controlling the considered quantities. The wake width increases linearly with these parameters, while the vortex-shedding non-dimensional frequency shows a linear decrease. The drag coefficient also linearly decreases with increasing the recirculation length and this is due to a reduction of the suctions on the base. However, the overall variation of C_D is small. Finally, a significant, and once again linear, increase of the fluctuations of the lift coefficient is found for increasing the mean recirculation streamwise length.

The Effects of Object Size and Reaching Distance on Upper Extremity Movement (물체 크기와 뻗기 거리가 상지 움직임에 미치는 영향)

  • Bae, Su-Young;Kim, Tae-Hoon
    • The Journal of Korean society of community based occupational therapy
    • /
    • v.10 no.1
    • /
    • pp.51-61
    • /
    • 2020
  • Objectives : The purpose of this study is to investigate the effect of object size and reaching distance on kinematic factors of the upper limb while performing arm reaching for normal subjects. Methods : The subjects of this study were 30 university students who were in D university in Busan, and the measuring tool was CMS-70P(Zebris Medizintechnik Gmbh, Germany), a three-dimensional motion analyzer. The task had six conditions. The average velocity of motion, average acceleration, maximum velocity, and the velocity definite number of movements were measured according to changes in object size(2cm, 10cm) and reaching distance(15%, 37.5%, 60%) when they performed arm reaching. The general characteristics of the subject were technical statistics. One-way ANOVA measurement was used to compare variables when the arm reaching task was performed from two object sizes to three reaching distance, and the post-test was conducted with Tukey test. In addition, an independent t-test was used to analyze the kinematic differences according to the two object sizes at three reaching distances. A two-way ANOVA measurement (3×2 Two-way ANOVA measurement) was performed to identify the interaction of the reaching distance(15%, 37.5%, 60%) and the object size(2cm, 10cm). The statistical significance level α was set to .05. Results : When the size of the object increased, the velocity and maximum velocity also increased, but the definite number of velocity decreased. When the reaching distance increased, the velocity and maximum velocity increased, whereas the definite number of velocity decreased. Conclusion : The clinical significance of this study could be utilized as the baseline data for grading object size and reaching distances when the reaching training is implemented for patients whose central nervous system was damaged.

A Case Study of Strong Wind Event over Yeongdong Region on March 18-20, 2020 (2020년 3월 18일-20일 영동지역 강풍 사례 연구)

  • Ahn, Bo-Yeong;Kim, Yoo-Jun;Kim, Baek-Jo;Lee, Yong-Hee
    • Journal of the Korean earth science society
    • /
    • v.42 no.5
    • /
    • pp.479-495
    • /
    • 2021
  • This study investigates the synoptic (patterns of southern highs, northern lows, and lows rapidly developed by tropopause folding), thermodynamic, and kinematic characteristics of a strong wind that occurred in the Yeongdong region of South Korea on March 18-20, 2020. To do so, we analyzed data from an automatic weather station (AWS), weather charts, the European Centre for Medium-range Weather Forecasts (ECMWF) reanalysis, rawinsonde, and windprofiler radars. The daily maximum instantaneous wind speed, exceeding 20 m s-1, was observed at five weather stations during the analysis period. The strongest instantaneous wind speed (27.7 m s-1) appeared in the Daegwallyeong area. According to the analysis of weather charts, along with the arrangement of the north-south low-pressure line, the isobars were moved to the Yeongdong area. It showed a sine wave shape, and a strong wind developed owing to the strong pressure gradient. On March 19, in the northern part of the Korean Peninsula, with a drop in atmospheric pressure of 19 hPa or more within one day, a continuous strong wind was developed by the synoptic structure of the developing polar low. In the adiabatic chart observed in Bukgangneung, the altitude of the inversion layer was located at an altitude of approximately 1-3 km above the mountaintop, along with the maximum wind speed. We confirmed that this is consistent with the results of the vertical wind field analysis of the rawinsonde and windprofiler data. In particular, based on the thermodynamic and kinematic vertical analyses, we suggest that strong winds due to the vertical gradient of potential temperature in the lower layer and the development of potential vorticity due to tropopause folding play a significant role in the occurrence of strong winds in the Yeongdong region.

Geometry and Kinematics of the Northern Part of Yeongdeok Fault (영덕단층 북부의 기하와 운동학적 특성)

  • Gwangyeon Kim;Sangmin Ha;Seongjun Lee;Boseong Lim;Min-Cheol Kim;Moon Son
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.1
    • /
    • pp.55-72
    • /
    • 2023
  • This study aims to identify the fault zone architecture and geometric and kinematic characteristics of the Yeongdeok Fault, based on the geometry and kinematic data of various structural elements obtained by detailed field survey and anisotropy of magnetic susceptibility (AMS) of the fault rocks. The Yeongdeok Fault extends from Opo-ri, Ganggu-myeon, Yeongdeok-gun to Gilgok-ri, Maehwa-myeon and Bangyul-ri, Giseong-myeon, Uljin-gun, and cuts various rock types from the Paleo-proterozoic to the Mesozoic with a range of 4.6-5.0 km (4.77 km in average) of right-lateral offset or forms the rock boundaries. The fault is divided into four segments based on its geometric features and shows N-S to NNW strikes and dips of an angle of ≥ 54° to the east at most outcrops, even though the outcrops showing the westward dipping (a range of 54°-82°) of fault surface increase as it goes north. The Yeongdeok Fault shows the difference in the fault zone architecture and in the fault core width ranging from 0.3 to 15 m depending on the bedrock type, which is interpreted as due to differences in the physical properties of bedrock such as ductility, mineral composition, particle size, and anisotropy. Combining the results of paleostress reconstruction and AMS in this and previous studies, the Yeongdeok Fault experienced (1) sinistral strike-slip under NW-SE maximum horizontal principle stress (σHmax) and NE-SW minimum horizontal principle stress (σHmin) in the late Cretaceous to early Cenozoic, and then (2) dextral strike-slip under NE-SW maximum horizontal principle stress (σHmax) and NW-SE minimum horizontal principle stress (σHmin) in the Paleogene. It is interpreted that the deformation caused by the Paleogene dextral strike-slip movement was the most dominant, and the crustal deformation was insignificant thereafter.

The Effects of Work Characteristics of Grapes-harvesting Tasks on the Wrist and Elbow Angles (포도 수확 작업의 작업특성에 따른 손목과 팔꿈치 각도 영향 분석)

  • Kim, Jihye;Lee, Inseok
    • Journal of the Ergonomics Society of Korea
    • /
    • v.36 no.5
    • /
    • pp.589-599
    • /
    • 2017
  • Objective: The objective of this study was to measure the upper-limb motions and postures of grapes-harvesting tasks using electrical goniometers and analyze the upper-limb motions in a kinematic way to assess the risk of musculoskeletal disorders. Background: Grapes farmers are exposed to various risk factors of musculoskeletal disorders (MSDs) such as repetitive upper-limb motions, non-neutral postures, and manual handling of heavy items. The farmers have to use scissors repetitively while harvesting grapes with their being arms elevated over the shoulder height, which presumed to increase the physical workload. It has been reported that the grapes farmers feel the harvesting task as the one of the hardest work in cultivating grapes. We tried measure the wrist and elbow angles while the farmers were carrying out harvesting tasks to understand how much workload the work impose on the farmers, which can be helpful in making interventions of preventing musculosksletal disorders among grapes farmers. Method: We measured joint angles at the right wrist and elbow with a wireless measuring system with two electrical goniometers from five grape farmers. The grapes-harvesting task was classified into 6 different subtasks: 1) searching, 2) picking, 3) cleaning, 4) carrying, 6) storing, and 7) miscellaneous tasks. The subtasks were compared by mean angles, 10%, 50%, and 90% APDF values of wrist flexion/extension, ulnar/radial deviation, and elbow flexion. Results: The Kruskal-Wallis tests showed that the 10th percentiles of APDF of ulnar/radial deviation and flexion/extension of the wrist significantly differs among subtasks (p<0.05). It was found that the farmers assumed more deviated wrist postures in the ulnar direction when they picking and adjusting the grapes. The use of scissors seemed to force the farmers to severely bend their wrist in the directions of ulnar deviation and flexion. The grapes-harvesting task showed similar wrist postures and motion with poultry deboning and milking tasks. Conclusion: The grapes harvesting tasks make the farmers take ulnar deviated and extended postures in the wrist. The use of scissors makes them take more severely deviated postures in the wrist. Safety guidelines including use of ergonomic scissors can be provided to the farmers to improve their work conditions. Application: The results of this study can be used as a basic data for the development of safety guidelines for agricultural work.

Association Study Analysis of Cluster-of-Differentiation Antigen 9 (CD9) Gene Polymorphism (g.358A>T) for Duroc Boar Post-thawed Semen Motility and Kinematic Characteristics

  • Cho, Eun-Seok;Sa, Soo-Jin;Kim, Ki-Hyun;Lee, Mi-Jin;Ko, Jun-Ho;Kim, Young-Ju;Seol, Kuk-Hwan;Hong, Joon-ki;Kim, Kwang-Sik;Kim, Yong-Min;Woo, Jae-Seok
    • Journal of Embryo Transfer
    • /
    • v.30 no.2
    • /
    • pp.109-114
    • /
    • 2015
  • Cryopreservation of boar semen is continually researched in reproductive technologies and genetic resource banking in breed conservation. For evaluating the boar semen quality, sperm motility (MOT) is an important parameter because the movement of spermatozoa indicates active metabolism, membrane integrity and fertilizing capacity. Various researches have been trying to improve the quality of semen post-thawed in boar. Recently, polymorphism (g.358A>T) of cluster-of-differentiation antigen 9 (CD9) gene reported to be significant association with MOT. Also, CD9 gene was expressed in the male germ line stem cells is crucial for sperm-egg fusion, and was therefore selected as candidate gene for boar semen. This study was conducted to evaluate the pig SNP (g.358A>T) of CD9 gene as a positional controlling for semen parameters of post-thawed boar semen. To results, the g.358A>T SNP of the CD9 gene was significantly associated with the traits such as MOT, curve linear velocity, straight line velocity, average path velocity and amplitude of lateral head displacement. Particularly, the g.358A>T SNP significantly has the highest association with MOT and animals with AA genotype (p<0.001). Therefore, we suggest that the g.358A>T in the intron 6 region of the porcine CD9 may be used as a molecular marker for Duroc boar Post-thawed semen quality, although its functional effect was not defined yet.