• Title/Summary/Keyword: Kinematic Characteristics

Search Result 497, Processing Time 0.024 seconds

An Analysis of Starting Motions in Time 300m Inline Skating (인라인 스케이트 T300m 출발동작 분석)

  • Park, Ki-Beom;Yang, Jeong-Ok;Lee, Joong-Sook
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.2
    • /
    • pp.123-137
    • /
    • 2003
  • This study is to present more effective starting skills through analysis of kinematic characteristics of starting motions in 300m Time Trials of Inline Skating. To achieve this goal, 6 athletes, 3 in the national team and 3 in business teams were chosen and their starting motions were examined with three-dimensional image analyses. The results of analyses in regard of positions and speed of the bodily center and angles, angular velocity, and linear velocity of articulations of lower limbs by sections of starting motions are as follows: In case of the central position, though it is effective to reduce the air resistance by lowering the upper part of the body maximumly, it is reasonable to accelerate by raising the upper part of the body to some degree for the running posture at the lower speed in the starting section. In the starting section, it is efficient to minimize the period of time in touching the ground. for this, it is necessary to train for taking motions without slippage while touching the ground. While 3 athletes in business teams kicked the ground as running right after the starting, the others in the national team slid on the ground. As the number of steps increased, the movable speed changed quickly. Thus the movable speed of athletes in the national team indicated big differences in two to three steps. If these factors are well supported, the push-away starting method might be better than the running starting method in terms of improvement of records.

An Experimental Study on Characteristics of Engine Oil Diluted by a Bio-Alcohol Mixture Fuel (바이오알코올 혼합연료의 엔진오일 희석특성에 대한 실험적 연구)

  • Kim, HyunJun;Lee, HoKil;Oh, SeDoo;Kim, Shin
    • Tribology and Lubricants
    • /
    • v.32 no.6
    • /
    • pp.183-188
    • /
    • 2016
  • Engine oil plays an important role in the mechanical lubrication and cooling of a vehicle engine. Recently, engine development has focused on the adoption of gasoline direct injection (GDI) and turbocharging methodology to achieve high-power and high-speed performance. However, oil dilution is a problem for GDI engines. Oil dilution occurs owing to high-pressure fuel injection into the combustion chamber when the engine is cold. The chemical components of engine oil are currently developed to accommodate gasoline fuel; however, bio-alcohol mixtures have become a recent trend in fuel development. Bio-alcohol fuels are alternatives to fossil fuels that can reduce vehicle emissions levels and greenhouse gas pollution. Therefore, the chemical components of engine oil should be improved to accommodate bio-alcohol fuels. This study employs a 2.0 L turbo-gas direct injection (T-GDI) engine in an experiment that dilutes oil with fuel. The experiment utilizes a variety of fuels, including sub-octane gasoline fuel (E0) and a bio-alcohol fuel mixture (Ethanol E3~E7). The results show that the lowest amount of oil dilution occurs when using E3 fuel. Analyzing the diluted engine oil by measuring density and moisture with respect to kinematic viscosity shows that the lowest values of these parameters occur when testing E3 fuel. The reason is confirmed to influence the vapor pressure of the low concentration bio-alcohol-fuel mixture.

Estimation of Sediment Transport and Influence Factor for the Prediction of Riverbed Changes (하천유역의 유사량 산정 및 하상변동 예측을 위한 영향인자의 평가분석)

  • Yun, Se-Ui;Lee, Jong-Tae;Jeong, Jae-Uk
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.5
    • /
    • pp.561-570
    • /
    • 1997
  • The feature of this paper is (1) to analyze the characteristics of rainfall-runoff relationship with kinematic wave theory, (2) to study the computational model to estimate the sediment yield, (3) to analyze the effects of bed change by transport formulas and the number of watershed division, and (4) to verify the model application with observation of channel data and measurement of rainfall, runoff, sediment discharge in Pyung-Chang River Basin. The calculated time of concentration of peak discharge occured little earlier than the actual, but the tendency of hydrograph coincided with observation. The shape of sediment hydrographs was similar to the water hydrograph. Based on above results, the applicability of the model was verified in detail. As the number of watershed division increased, the difference between the measured runoff and sediment values and the estimated ones decreased. The result of calculation with Yalin's formula for surface and Acker-White's one for channel gave the best agreement with the measured data among the six selected sediment transport foumulas.

  • PDF

Real-Time Dynamic Analysis of Vehicle with Experimental Vehicle Model (실험기반 차량모델을 이용한 실시간 차량동역학 해석)

  • Yoo, Wan-Suk;Na, Sang-Do;Kim, Kwang-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.9
    • /
    • pp.1003-1008
    • /
    • 2012
  • The paper presents an Experimental Vehicle Model (EVM), that utilizes the kinematic characteristics of suspensions from SPMD test data. The relative displacement and orientation of a wheel with respect to the body are represented as a function of the vertical displacement of the wheel. The equations of motion of the vehicle are formulated in terms of local coordinates that do not require coordinate transformation, which improves the efficiency of dynamic analysis. The EOM was modularized for each suspension model, and a $6{\times}6$ vehicle model was obtained by combining six suspensions. The analysis results were compared with ADAMS to verify the accuracy of the EVM. This study also verifies the feasibility of real-time simulation with the developed EVM. For a vehicle simulation for 1 ms, the real simulation time required within 20% of the prescribed time. This result shows that the EVM meets the real-time simulation requirements.

ORIGIN AND STATUS OF LOW-MASS CANDIDATE HYPERVELOCITY STARS

  • Yeom, Bum-Suk;Lee, Young Sun;Koo, Jae-Rim;Beers, Timothy C.;Kim, Young Kwang
    • Journal of The Korean Astronomical Society
    • /
    • v.52 no.3
    • /
    • pp.57-69
    • /
    • 2019
  • We present an analysis of the chemical abundances and kinematics of six low-mass dwarf stars, previously claimed to be candidate hypervelocity stars (HVSs). We obtained moderate-resolution (R ~ 6000) spectra of these stars to estimate the abundances of several chemical elements (Mg, Si, Ca, Ti, Cr, Fe, and Ni), and derived their space velocities and orbital parameters using proper motions from the Gaia Data Release 2. All six stars are shown to be bound to the Milky Way, and in fact are not even considered high-velocity stars with respect to the Galactic rest frame. Nevertheless, we attempt to characterize their parent Galactic stellar components by simultaneously comparing their element abundance patterns and orbital parameters with those expected from various Galactic stellar components. We find that two of our program stars are typical disk stars. For four stars, even though their kinematic probabilistic membership assignment suggests membership in the Galactic disk, based on their distinct orbital properties and chemical characteristics, we cannot rule out exotic origins as follows. Two stars may be runaway stars from the Galactic disk. One star has possibly been accreted from a disrupted dwarf galaxy or dynamically heated from a birthplace in the Galactic bulge. The last object may be either a runaway disk star or has been dynamically heated. Spectroscopic follow-up observations with higher resolution for these curious objects will provide a better understanding of their origin.

A Case Study of Snowfall Event over Yeongdong Region on March 1-2, 2021 (2021년 3월 1-2일 영동지역 강설 사례 연구)

  • Bo-Yeong Ahn;Byunghwan Lim
    • Journal of the Korean earth science society
    • /
    • v.44 no.2
    • /
    • pp.119-134
    • /
    • 2023
  • The synoptic, thermodynamic, and dynamic characteristics of a snowfall event that occurred in the Yeongdong region on March 1-2, 2021, were investigated. Surface weather charts, ERA5 reanalysis data, rawinsonde data, GK-2A satellite data, and WISSDOM data were used for analysis. The snow depth, exceeding 10 cm, was observed at four weather stations during the analysis period. The maximum snow depth (37.4 cm) occurred at Bukgangneung. According to the analysis of the weather charts, old and dry air was trapped within relatively warm, humid air in the upper atmosphere over the East Sea and adjacent Yeongdong region. This caused unstable atmospheric conditions that led to developing convective clouds and snowfall over Bukgangneung. In particular, based on the thermodynamic and kinematic vertical analysis, we suggest that strong winds attributable to the vertical gradient of potential temperature in the low layer and the development of convective instability due to cold advection played a significant role in the occurrence of snowfall in the Yeongdong region. These results were confirmed from the vertical analysis of the rawinsonde data.

Runoff Analysis due to Moving Storms based on the Basin Shapes (I) - for the Symmetric Basin Shape - (유역형상에 따르는 이동강우의 유출영향분석(I) - 대칭유역형상 -)

  • Han, Kun Yeun;Jeon, Min Woo;Kim, Ji Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1B
    • /
    • pp.15-25
    • /
    • 2006
  • Using kinematic wave equation, the influence of moving storms to runoff was analysised with a focus on watersheds. Watershed shapes used are the oblong, square and elongated shape, and the distribution types of moving storms used are uniform, advanced and intermediate type. The runoff hydrographs according to the rainfall distribution types were simulated and the characteristics were explored for the storms moving down, up and cross the watershed with various velocity. The shape, peak time and peak runoff of a runoff hydrograph are significantly influenced by spatial and temporal variability in rainfall and watershed shapes. A rain storm moving in the cross direction of channel flow produces a higher peak runoff than in the downstream direction and upstream direction. A peak runoff from a storm moving downstream exceeds that from a storm moving upstream. For storms moving downstream peak time was more delayed than for other storm direction in the case of elongated watershed. The runoff volume and time base of the hydrograph decreased with the increasing storm speed.

The efficient data-driven solution to nonlinear continuum thermo-mechanics behavior of structural concrete panel reinforced by nanocomposites: Development of building construction in engineering

  • Hengbin Zheng;Wenjun Dai;Zeyu Wang;Adham E. Ragab
    • Advances in nano research
    • /
    • v.16 no.3
    • /
    • pp.231-249
    • /
    • 2024
  • When the amplitude of the vibrations is equivalent to that clearance, the vibrations for small amplitudes will really be significantly nonlinear. Nonlinearities will not be significant for amplitudes that are rather modest. Finally, nonlinearities will become crucial once again for big amplitudes. Therefore, the concrete panel system may experience a big amplitude in this work as a result of the high temperature. Based on the 3D modeling of the shell theory, the current work shows the influences of the von Kármán strain-displacement kinematic nonlinearity on the constitutive laws of the structure. The system's governing Equations in the nonlinear form are solved using Kronecker and Hadamard products, the discretization of Equations on the space domain, and Duffing-type Equations. Thermo-elasticity Equations. are used to represent the system's temperature. The harmonic solution technique for the displacement domain and the multiple-scale approach for the time domain are both covered in the section on solution procedures for solving nonlinear Equations. An effective data-driven solution is often utilized to predict how different systems would behave. The number of hidden layers and the learning rate are two hyperparameters for the network that are often chosen manually when required. Additionally, the data-driven method is offered for addressing the nonlinear vibration issue in order to reduce the computing cost of the current study. The conclusions of the present study may be validated by contrasting them with those of data-driven solutions and other published articles. The findings show that certain physical and geometrical characteristics have a significant effect on the existing concrete panel structure's susceptibility to temperature change and GPL weight fraction. For building construction industries, several useful recommendations for improving the thermo-mechanics' behavior of structural concrete panels are presented.

Analysis of the Kinematic Characteristics at Entrance to the Straight Course from the Curvilinear Course in the 200m-Track Game (육상 200m 경기의 곡선주로에서 직선주로 진입 시 운동학적 특성분석)

  • Oh, Sei-Jin
    • Korean Journal of Applied Biomechanics
    • /
    • v.12 no.2
    • /
    • pp.51-63
    • /
    • 2002
  • This study sought to identify the kinematic characteristics at entrance to the straight course from the curvilinear course in the 200m-track game. For this purpose, this study was conducted for 4 sprinters by setting the 10m-section combined from the curvilenear track to the straight course and shooting them with the camcorder. It was set up to include all the sections of analysis by using the framework of the control point knowing the coordinate of the space and actual analysis was conducted on the motion showing the best records by conducting it for each subject five times. As a result, the following conclusion was drawn: It was found that the subjects showed the average stride of 4.5${\pm}$0.41 times at the 10-meter section and the required time of 1.42${\pm}$0.04sec. They showed the ratio average stride to height of 1.25${\pm}$0.20% and the average speed of 7.06${\pm}$0.19m/s. The displacement in the center of gravity of the human body at the section combined from the curvilinear course to the straight course was moving along the inward course of the curvilinear course, and the displacement of the leg located at the outward direction(right) was found to be larger than that of the leg located at the inward direction(left). In the speed of the left and right hand segments, it was found that the speed of the right hand located in the outward direction was faster than that of the left hand located at the inward, and it was found that the subjects progressed in the curvilinear course. The subjects showed the larger angle of the shoulder joint when the upper arm was located in the forward direction than when the it was located in the backward direction. In the curvilinear course, they showed the lower value of the lateral angle of the trunk when the right foot located at the outward direction left the ground than when the left foot located at the inward direction left the ground. And it was found that the lateral angle of the trunk became lower with approaching the straight course.

The movement history of the southern part of the Yangsan Fault Zone interpreted from the geometric and kinematic characteristics of the Sinheung Fault, Eonyang, Gyeongsang Basin, Korea (언양 신흥단층의 기하학적.운동학적 특성으로부터 해석된 경상분지 양산단층대 남부의 단층운동사)

  • Kang, Ji-Hoon;Ryoo, Chung-Ryul
    • The Journal of the Petrological Society of Korea
    • /
    • v.18 no.1
    • /
    • pp.19-30
    • /
    • 2009
  • The main fault of Yangsan Fault Zone (YFZ) and Quaternary fault were found in a trench section with NW-SE direction at an entrance of the Sinheung village in the northern Eonyang, Ulsan, Korea. We interpreted the movement history of the southern part of the YFZ from the geometric and kinematic characteristics of basement rock's fault of the YFZ (Sinheung Fault) and Quaternary fault (Quaternary Sinheung Fault) investigated at the trench section. The trench outcrop consists mainly of Cretaceous sedimentary rocks of Hayang Group and volcanic rocks of Yucheon Group which lie in fault contact and Quaternary deposits which unconformably overlie these basement rocks. This study suggests that the movement history of the southern part of the YFZ can be explained at least by two different strike-slip movements, named as D1 and D2 events, and then two different dip-slip movements, named as D3 and D4 events. (1) D1 event: a sinistral strike-slip movement which caused the bedding of sedimentary rocks to be high-angled toward the main fault of the YFZ. (2) D2 event: a dextral strike-slip movement slipped along the high-angled beddings as fault surfaces. The main characteristic structural elements are predominant sub-horizontal slickenlines and sub-vertical fault foliations which show a NNE trend. The event formed the main fault rocks of the YFZ. (3) D3 event: a conjugate reverse-slip movement slipped along fault surfaces which trend (E)NE and moderately dip (S)SE or (N)NW. The slickenlines, which plunge in the dip direction of fault surfaces, overprint the previous sub-horizontal slickenlines. The fault is characterized by S-C fabrics superimposed on the D2 fault gouges, fault surfaces showing ramp and flat geometry, asymmetric and drag folds and collapse structures accompanied with it. The event dispersed the orientation of the main fault surface of the YFZ. (4) D4 event: a Quaternary reverse-slip movement showing a displacement of several centimeters with S-C fabrics on the Quternary deposits. The D4 fault surfaces are developed along the extensions of the D3 fault surfaces of basement rocks, like the other Quaternary faults within the YFZ. This indicates that these faults were formed under the same compression of (N)NW-(S)SE direction.